2,153
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

How does information from low and high spatial frequencies interact during scene categorization?

, , , , &
Pages 853-867 | Received 19 Dec 2016, Accepted 20 Jun 2017, Published online: 17 Aug 2017

References

  • Abrams, J., Barbot, A., & Carrasco, M. (2010). Voluntary attention increases perceived spatial frequency. Attention, Perception & Psychophysics, 72(6), 1510–1521. doi: 10.3758/APP.72.6.1510
  • Awasthi, B., Sowman, P. F., Friedman, J., & Williams, M. A. (2013). Distinct spatial scale sensitivities for early categorization of faces and places: Neuromagnetic and behavioural findings. Frontiers in Human Neuroscience, 7, 91. doi: 10.3389/fnhum.2013.00091
  • Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. Journal of Cognitive Neuroscience, 15(4), 600–609. doi: 10.1162/089892903321662976
  • Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Sciences, 11(7), 280–289. doi: 10.1016/j.tics.2007.05.005
  • Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., … Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences, 103(2), 449–454. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1326160&tool=pmcentrez&rendertype=abstract doi: 10.1073/pnas.0507062103
  • Bullier, J. (2001). Integrated model of visual processing. Brain Research Reviews, 36(2-3), 96–107. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11690606 doi: 10.1016/S0165-0173(01)00085-6
  • Campagne, A., Fradcourt, B., Pichat, C., Baciu, M., Kauffmann, L., & Peyrin, C. (2016). Cerebral correlates of emotional and action appraisals during visual processing of emotional scenes depending on spatial frequency: A pilot study. Plos One, 11(1), e0144393. doi: 10.1371/journal.pone.0144393
  • Caplette, L., West, G., Gomot, M., Gosselin, F., & Wicker, B. (2014). Affective and contextual values modulate spatial frequency use in object recognition. Frontiers in Psychology. doi: 10.3389/fpsyg.2014.00512
  • Collin, C. A., & McMullen, P. A. (2005). Subordinate-level categorization relies on high spatial frequencies to a greater degree than basic-level categorization. Perception & Psychophysics, 67(2), 354–364. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15971697 doi: 10.3758/BF03206498
  • De Cesarei, A., & Loftus, G. R. (2011). Global and local vision in natural scene identification. Psychonomic Bulletin & Review, 18(5), 840–847. doi: 10.3758/s13423-011-0133-6
  • De Valois, R., Albrecht, D., & Thorell, L. (1982). Spatial frequency selectivity of cells in macaque visual cortex. Vision Research, 22, 545–559. doi: 10.1016/0042-6989(82)90113-4
  • Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America A, 4(12), 2379–2394. doi: 10.1364/JOSAA.4.002379
  • Fradcourt, B., Peyrin, C., Baciu, M., & Campagne, A. (2013). Behavioral assessment of emotional and motivational appraisal during visual processing of emotional scenes depending on spatial frequencies. Brain and Cognition, 83(1), 104–113. doi: 10.1016/j.bandc.2013.07.009
  • Harel, A., & Bentin, S. (2009). Stimulus type, level of categorization, and spatial-frequencies utilization: Implications for perceptual categorization hierarchies. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 1264–1273. doi: 10.1037/a0013621
  • Harwerth, R. S., & Levi, D. M. (1978). Reaction time as a measure of suprathreshold grating detection. Vision Research, 18(11), 1579–1586. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24333686 doi: 10.1016/0042-6989(78)90014-7
  • Hegdé, J. (2008). Time course of visual perception: Coarse-to-fine processing and beyond. Progress in Neurobiology, 84(4), 405–439. doi: 10.1016/j.pneurobio.2007.09.001
  • Hughes, H. C., Nozawa, G., & Kitterle, F. (1996). Global precedence, spatial frequency channels, and the statistics of natural images. Journal of Cognitive Neuroscience, 8(3), 197–230. doi: 10.1162/jocn.1996.8.3.197
  • Kauffmann, L., Bourgin, J., Guyader, N., & Peyrin, C. (2015). The neural bases of the semantic interference of spatial frequency-based information in scenes. Journal of Cognitive Neuroscience, 1–10. doi: 10.1162/jocn
  • Kauffmann, L., Chauvin, A., Guyader, N., & Peyrin, C. (2015). Rapid scene categorization: Role of spatial frequency order, accumulation mode and luminance contrast. Vision Research, 107, 49–57. doi: 10.1016/j.visres.2014.11.013
  • Kauffmann, L., Ramanoël, S., Guyader, N., Chauvin, A., & Peyrin, C. (2015). Spatial frequency processing in scene-selective cortical regions. NeuroImage, 112, 86–95. doi: 10.1016/j.neuroimage.2015.02.058
  • Kauffmann, L., Ramanoël, S., & Peyrin, C. (2014). The neural bases of spatial frequency processing during scene perception. Frontiers in Integrative Neuroscience, 8(37), 1–14. doi: 10.3389/fnint.2014.00037
  • Kveraga, K., Boshyan, J., & Bar, M. (2007). Magnocellular projections as the trigger of top-down facilitation in recognition. The Journal of Neuroscience, 27(48), 13232–13240. doi: 10.1523/JNEUROSCI.3481-07.2007
  • Loftus, G. R., & Harley, E. M. (2005). Why is it easier to identify someone close than far away? Psychonomic Bulletin & Review, 12(1), 43–65. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15948283 doi: 10.3758/BF03196348
  • Maunsell, J., Ghose, G. M., Assad, J. A., Mcadams, C. J., Boudreau, C. E., & Noerager, B. D. (1999). Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Visual Neuroscience, 16, 1–14. doi: 10.1017/S0952523899156177
  • McCotter, M., Gosselin, F., Sowden, P., & Schyns, P. (2005). The use of visual information in natural scenes. Visual Cognition, 12(6), 938–953. doi: 10.1080/13506280444000599
  • Morrison, D. J., & Schyns, P. G. (2001). Usage of spatial scales for the categorization of faces, objects, and scenes. Psychonomic Bulletin & Review, 8(3), 454–469. doi: 10.3758/BF03196180
  • Mu, T., & Li, S. (2013). The neural signature of spatial frequency-based information integration in scene perception. Experimental Brain Research, 227(3), 367–377. doi: 10.1007/s00221-013-3517-1
  • Musel, B., Chauvin, A., Guyader, N., Chokron, S., & Peyrin, C. (2012). Is coarse-to-fine strategy sensitive to normal aging? PloS One, 7(6), e38493. doi: 10.1371/journal.pone.0038493
  • Oliva, A., & Schyns, P. G. (1997). Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cognitive Psychology, 34, 72–107. doi:0010-0285/97 doi: 10.1006/cogp.1997.0667
  • Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene : A holistic representation of the spatial envelope. International Journal of Computer Vision, 42(3), 145–175. doi: 10.1023/A:1011139631724
  • Ozgen, E., Payne, H. E., Sowden, P. T., & Schyns, P. G. (2006). Retinotopic sensitisation to spatial scale: Evidence for flexible spatial frequency processing in scene perception. Vision Research, 46(6-7), 1108–1119. doi: 10.1016/j.visres.2005.07.015
  • Parker, D. M., Lishman, J. R., & Hughes, J. (1992). Temporal integration of spatially filtered visual images. Perception, 21(2), 147–160. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1513664 doi: 10.1068/p210147
  • Parker, D. M., Lishman, J. R., & Hughes, J. (1996). Role of coarse and fine spatial information in face and object processing. Journal of Experimental Psychology: Human Perception and Performance, 22(6), 1448–1466. doi: 10.1037/0096-1523.22.6.1448
  • Peyrin, C., Michel, C. M., Schwartz, S., Thut, G., Seghier, M., Landis, T., … Vuilleumier, P. (2010). The neural substrates and timing of top-down processes during coarse-to-fine categorization of visual scenes: A combined fMRI and ERP study. Journal of Cognitive Neuroscience, 22(12), 2768–2780. doi: 10.1162/jocn.2010.21424
  • Poggio, G. F. (1972). Spatial properties of neurons in striate cortex of unanesthetized macaque monkey. Investigative Ophthalmology, 11(5), 368–377. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4623891
  • Rotshtein, P., Schofield, A., Funes, M. J., & Humphreys, G. W. (2010). Effects of spatial frequency bands on perceptual decision : It is not the stimuli but the comparison. Journal of Vision, 10(10), 25–25. doi:10.1167/10.10.25.Introduction doi: 10.1167/10.10.25
  • Schyns, P. G. (1998). Diagnostic recognition: Task constraints, object information, and their interactions. Cognition, 67(1-2), 147–179. doi: 10.1016/S0010-0277(98)00016-X
  • Schyns, P. G., & Oliva, A. (1994). From blobs to boundary edges: Evidence for time- and spatial-scale-dependent scene recognition. Psychological Science, 5(4), 195–200. doi: 10.1111/j.1467-9280.1994.tb00500.x
  • Schyns, P. G., & Oliva, A. (1999). Dr. Angry and Mr. Smile: When categorization flexibly modifies the perception of faces in rapid visual presentations. Cognition, 69(3), 243–265. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10193048 doi: 10.1016/S0010-0277(98)00069-9
  • Shams, L., & von der Malsburg, C. (2002). The role of complex cells in object recognition. Vision Research, 42(22), 2547–2554. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12445848 doi: 10.1016/S0042-6989(02)00202-X
  • Shapley, R., & Lennie, P. (1985). Spatial frequency analysis in the visual system. Annual Review of Neuroscience, 8(1978), 547–581. doi: 10.1146/annurev.ne.08.030185.002555
  • Sowden, P. T., Özgen, E., Schyns, P. G., & Daoutis, C. (2003). Expectancy effects on spatial frequency processing. Vision Research, 43(26), 2759–2772. doi: 10.1016/S0042-6989(03)00480-2
  • Sowden, P. T., & Schyns, P. G. (2006). Channel surfing in the visual brain. Trends in Cognitive Sciences, 10, 538–545. doi: 10.1016/j.tics.2006.10.007
  • Thorpe, S. J., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522. doi: 10.1038/381520a0
  • Trapp, S., & Bar, M. (2015). Prediction, context, and competition in visual recognition. Annals of the New York Academy of Sciences, 1339(1), 190–198. doi: 10.1111/nyas.12680
  • Van Essen, D., & Deyoe, E. A. (1995). Concurrent processing in the primate visual cortex. In M. Gazzaniga (Ed.), The cognitive neurosciences (pp. 383–400). Cambridge: Bradford Book.
  • Vannucci, M., Viggiano, M. P., & Argenti, F. (2001). Identification of spatially filtered stimuli as function of the semantic category. Cognitive Brain Research, 12(3), 475–478. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11689308 doi: 10.1016/S0926-6410(01)00086-6