440
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Reward-priming impacts visual working memory maintenance: Evidence from human electrophysiology

, , &
Pages 956-971 | Received 21 Feb 2017, Accepted 24 Jul 2017, Published online: 25 Oct 2017

References

  • Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111. doi: 10.1111/j.0963-7214.2004.01502006.x
  • Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences of the United States of America, 108(25), 10367–10371. doi: 10.1073/pnas.1104047108
  • Anderson, B. A., Laurent, P. A., & Yantis, S. (2012). Generalization of value-based attentional priority. Visual Cognition. doi: 10.1080/13506285.2012.679711
  • Anderson, B. A., Laurent, P. A., Yantis, S., & Lauwereyns, J. (2011). Learned value magnifies salience-based attentional capture. PloS One, 6(11), e27926. doi: 10.1371/journal.pone.0027926
  • Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119–126. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11239812 doi: 10.1016/S1364-6613(00)01593-X
  • Awh, E., Vogel, E. K., & Oh, S.-H. (2006). Interactions between attention and working memory. Neuroscience, 139(1), 201–208. doi: 10.1016/j.neuroscience.2005.08.023
  • Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(7), 1–11. doi:10.1167/9.10.7. Introduction
  • Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science (New York, N.Y.), 321(5890), 851–854. doi: 10.1126/science.1158023
  • Becke, A., Muller, N., Vellage, A., Schoenfeld, M. A., & Hopf, J. M. (2015). Neural sources of visual working memory maintenance in human parietal and ventral extrastriate visual cortex. NeuroImage, 110, 78–86. doi: 10.1016/j.neuroimage.2015.01.059
  • Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159. doi: 10.1162/neco.1995.7.6.1129
  • Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28(3), 309–369. doi: 10.1016/S0165-0173(98)00019-8
  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. doi: 10.1163/156856897X00357
  • Chun, M. M. (2011). Visual working memory as visual attention sustained internally over time. Neuropsychologia, 49(6), 1407–1409. doi: 10.1016/j.neuropsychologia.2011.01.029
  • Cohen, M. A., Rhee, J. Y., & Alvarez, G. A. (2016). Limits on perceptual encoding can be predicted from known receptive field properties of human visual cortex. Journal of Experimental Psychology: Human Perception and Performance, 42(1), 67–77. doi: 10.1037/xhp0000108
  • Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1(1), 42–45. doi: 10.20982/tqmp.01.1.p042
  • Della Libera, C., & Chelazzi, L. (2006). Visual selective attention and the effects of monetary rewards. Psychological Science, 17(3), 222–227. doi: 10.1111/j.1467-9280.2006.01689.x
  • Della Libera, C., & Chelazzi, L. (2009). Learning to attend and to ignore is a matter of gains and losses. Psychological Science, 20(6), 778–784. doi: 10.1111/j.1467-9280.2009.02360.x
  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. doi: 10.1016/j.jneumeth.2003.10.009
  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. doi:10.1146/annurev.neuro.18.1.193
  • Drew, T., & Vogel, E. K. (2008). Neural measures of individual differences in selecting and tracking multiple moving objects. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 28(16), 4183–4191. doi: 10.1523/JNEUROSCI.0556-08.2008
  • Druzgal, T. J., & D’Esposito, M. (2001). Activity in fusiform face area modulated as a function of working memory load. Cognitive Brain Research, 10(3), 355–364. doi: 10.1016/S0926-6410(00)00056-2
  • Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99(3), 225–234. doi:10.1016/S0921-884X(96)95711-2
  • Engelmann, J. B., & Pessoa, L. (2007). Motivation sharpens exogenous spatial attention. Emotion, 7(3), 668–674. doi: 10.1037/1528-3542.7.3.668
  • Feldmann-Wüstefeld, T., & Schubö, A. (2014). Stimulus homogeneity enhances implicit learning: Evidence from contextual cueing. Vision Research, 97, 108–116. doi: 10.1016/j.visres.2014.02.008
  • Gao, Z., Li, J., Liang, J., Chen, H., & Shen, M. (2009). Storing fine detailed information in visual working memory — evidence from event-related potentials. Journal of Vision, 9(17), 1–12. doi: 10.1167/9.7.17
  • Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135. doi: 10.1016/j.tics.2011.11.014
  • Gong, M., & Li, S. (2014). Learned reward association improves visual working memory. Journal of Experimental Psychology. Human Perception and Performance. doi: 10.1037/a0035131
  • Hickey, C., Chelazzi, L., & Theeuwes, J. (2010). Reward changes salience in human vision via the anterior cingulate. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 30(33), 11096–11103. doi: 10.1523/JNEUROSCI.1026-10.2010
  • Hickey, C., Chelazzi, L., Theeuwes, J., & Geng, J. J. (2014). Reward-priming of location in visual search. PloS One, 9(7), e103372. doi: 10.1371/journal.pone.0103372
  • Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21(4), 760–775. doi: 10.1162/jocn.2009.21039
  • Hickey, C., & Los, S. (2015). Reward priming of temporal preparation. Visual Cognition. doi: 10.1080/13506285.2014.998325
  • Hickey, C., McDonald, J. J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of visual attention. Journal of Cognitive Neuroscience, 18(4), 604–613. doi: 10.1162/jocn.2006.18.4.604
  • Hickey, C., Olivers, C. N. L., Meeter, M., & Theeuwes, J. (2011). Feature priming and the capture of visual attention: Linking two ambiguity resolution hypotheses. Brain Research, 1370, 175–184. doi: 10.1016/j.brainres.2010.11.025
  • Ikkai, A., McCollough, A. W., & Vogel, E. K. (2010). Contralateral delay activity provides a neural measure of the number of representations in visual working memory. Journal of Neurophysiology, 103(4), 1963–1968. doi: 10.1152/jn.00978.2009
  • Infanti, E., Hickey, C., & Turatto, M. (2015). Reward associations impact both iconic and visual working memory. Vision Research, 107, 22–29. doi: 10.1016/j.visres.2014.11.008
  • Kawasaki, M., & Yamaguchi, Y. (2013). Frontal theta and beta synchronizations for monetary reward increase visual working memory capacity. Social Cognitive and Affective Neuroscience, 8(5), 523–530. doi: 10.1093/scan/nss027
  • Kiss, M., Driver, J., & Eimer, M. (2009). Reward priority of visual target singletons modulates event-related potential signatures of attentional selection. Psychological Science, 20(2), 245–251. doi: 10.1111/j.1467-9280.2009.02281.x
  • Krawczyk, D. C., Gazzaley, A., & D’Esposito, M. (2007). Reward modulation of prefrontal and visual association cortex during an incentive working memory task. Brain Research, 1141, 168–177. doi: 10.1016/j.brainres.2007.01.052
  • Kristjánsson, A., Sigurjonsdottir, O., & Driver, J. (2010). Fortune and reversals of fortune in visual search: Reward contingencies for pop-out targets affect search efficiency and target repetition effects. Attention, Perception & Psychophysics, 72(5), 1229–1236. doi: 10.3758/APP.72.5.1229
  • Kuo, B.-C., Stokes, M. G., Murray, A. M., & Nobre, A. C. (2014). Attention biases visual activity in visual short-term memory. Journal of Cognitive Neuroscience, 26(7), 1377–1389. doi: 10.1162/jocn_a_00577
  • Kuo, B.-C., Stokes, M. G., & Nobre, A. C. (2012). Attention modulates maintenance of representations in visual short-term memory. Journal of Cognitive Neuroscience, 24(1), 51–60. doi: 10.1162/jocn_a_00087
  • Luck, S. J. (2005). An introduction to the event-related potential technique. Monographs of the society for research in child development (Vol. 78). doi: 10.1118/1.4736938
  • Luck, S. J. (2014). An introduction to the event-related potential technique. (MIT press, Ed.) (2nd edition).
  • Luck, S. J., & Hillyard, S. A. (1994a). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291–308. doi: 10.1111/j.1469-8986.1994.tb02218.x
  • Luck, S. J., & Hillyard, S. A. (1994b). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception Performance. doi: 10.1037/0096-1523.20.5.1000
  • Machizawa, M., Goh, C., & Driver, J. (2012). Human visual short-term memory precision can be varied at will when the number of retained items is low. Psychological Science. doi: 10.1177/0956797611431988
  • Maunsell, J. H. R. (2004). Neuronal representations of cognitive state: Reward or attention? Trends in Cognitive Sciences, 8(6), 261–265. doi: 10.1016/j.tics.2004.04.003
  • Mayer, J. S., Bittner, R. A., Nikolić, D., Bledowski, C., Goebel, R., & Linden, D. E. J. (2007). Common neural substrates for visual working memory and attention. NeuroImage, 36(2), 441–453. doi: 10.1016/j.neuroimage.2007.03.007
  • Mazza, V., Turatto, M., & Caramazza, A. (2009a). An electrophysiological assessment of distractor suppression in visual search tasks. Psychophysiology, 46(4), 771–775. doi: 10.1111/j.1469-8986.2009.00814.x
  • Mazza, V., Turatto, M., & Caramazza, A. (2009b). Attention selection, distractor suppression and N2pc. Cortex, 45(7), 879–890. doi: 10.1016/j.cortex.2008.10.009
  • Mccollough, A. W., Machizawa, M. G., & Vogel, E. K. (2007). Electrophysiological measures of maintaining representations in visual woring memory. Cortex, 43, 77–94. doi: 10.1016/S0010-9452(08)70447-7
  • Pascucci, D., Mastropasqua, T., & Turatto, M. (2015). Monetary reward modulates task-irrelevant perceptual learning for invisible stimuli. PLoS ONE, 10(5), 1–12. doi: 10.1371/journal.pone.0124009
  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. doi: 10.1163/156856897X00366
  • Pessoa, L. (2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences, 13(4), 160–166. doi: 10.1016/j.tics.2009.01.006
  • Raymond, J. E., & O’Brien, J. L. (2009). Selective visual attention and motivation the consequences of value learning in an attentional blink task. Psychological Science, 20(8), 981–988. doi: 10.1111/j.1467-9280.2009.02391.x
  • Reinhart, R. M. G., McClenahan, L. J., & Woodman, G. F. (2016). Attentions accelerator. Psychological Science. doi: 10.1177/0956797616636416
  • Rutherford, H. J. V., O’Brien, J. L., & Raymond, J. E. (2010). Value associations of irrelevant stimuli modify rapid visual orienting. Psychonomic Bulletin & Review, 17(4), 536–542. doi: 10.3758/PBR.17.4.536
  • Sanada, M., Ikeda, K., Kimura, K., & Hasegawa, T. (2013). Motivation enhances visual working memory capacity through the modulation of central cognitive processes. Psychophysiology, 50(9), 864–871. doi: 10.1111/psyp.12077
  • Sawaki, R., Luck, S. J., & Raymond, J. E. (2015). How attention changes in response to incentives. Journal of Cognitive Neuroscience, 1–10. doi: 10.1162/jocn
  • Schneider, D., Bonmassar, C., & Hickey, C. (2017). Motivation and short-term memory in visual search: Attention’s accelerator revisited. Cortex. doi: 10.1016/j.cortex.2017.06.022
  • Schubö, A., Wykowska, A., & Müller, H. J. (2007). Detecting pop-out targets in contexts of varying homogeneity: Investigating homogeneity coding with event-related brain potentials (ERPs). Brain Research, 1138(1), 136–147. doi: 10.1016/j.brainres.2006.12.059
  • Shapiro, K. L., & Miller, C. E. (2011). The role of biased competition in visual short-term memory. Neuropsychologia, 49(6), 1506–1517. doi: 10.1016/j.neuropsychologia.2011.02.017
  • Thomas, P. M. J., FitzGibbon, L., & Raymond, J. E. (2016). Value conditioning modulates visual working memory processes. Journal of Experimental Psychology: Human Perception and Performance, 42(1), 6–10. doi: 10.1037/xhp0000144
  • Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748–751. doi: 10.1038/nature02447
  • Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503. doi: 10.1038/nature04171
  • Wallis, G., Stokes, M. G., Arnold, C., & Nobre, A. C. (2015). Reward boosts working memory encoding over a brief temporal window. Visual Cognition, 23(1–2), 291–312. doi: 10.1080/13506285.2015.1013168
  • Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4, 1120–1135. doi: 10.1167/4.12.11
  • Woodman, G. F., Arita, J. T., & Luck, S. J. (2009). A cuing study of the N2pc component: An index of attentional deployment to objects rather than spatial locations. Brain Research, 1297, 101–111. doi: 10.1016/j.brainres.2009.08.011
  • Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400(6747), 867–869. doi: 10.1038/23698
  • Woodman, G. F., & Luck, S. J. (2003). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 121–138. doi: 10.1167/1.3.103
  • Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233–235. doi: 10.1038/nature06860

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.