615
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Attention capture during visual search: The consequences of distractor appeal, familiarity, and frequency

, &
Pages 260-278 | Received 26 Sep 2016, Accepted 25 Jul 2018, Published online: 28 Aug 2018

References

  • Anderson, B. A., & Folk, C. L. (2012). Dissociating location-specific inhibition and attention shifts: Evidence against the disengagement account of contingent capture. Attention, Perception, & Psychophysics, 74(6), 1183–1198.
  • Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108(25), 10367–10371.
  • Anderson, B. A., & Yantis, S. (2013). Persistence of value-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 6–9.
  • Antes, J. R. (1974). The time course of picture viewing. Journal of Experimental Psychology, 103(1), 62–70.
  • Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443.
  • Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55(5), 485–496.
  • Biggs, A. T., Kreager, R. D., Gibson, B. S., Villano, M., & Crowell, C. R. (2012). Semantic and affective salience: The role of meaning and preference in attentional capture and disengagement. Journal of Experimental Psychology: Human Perception and Performance, 38(2), 531–541.
  • Blakely, D. P., Wright, T. J., Dehili, V. M., Boot, W. R., & Brockmole, J. R. (2012). Characterizing the time course and nature of attentional disengagement effects. Vision Research, 56, 38–48.
  • Boot, W. R., & Brockmole, J. R. (2010). Irrelevant features at fixation modulate saccadic latency and direction in visual search. Visual Cognition, 18(4), 481–491.
  • Brockmole, J. R., & Boot, W. R. (2009). Should I stay or should I go? Attentional disengagement from visually unique and unexpected items at fixation. Journal of Experimental Psychology: Human Perception and Performance, 35(3), 808–815.
  • Brockmole, J. R., & Henderson, J. M. (2005a). Attentional prioritization of new objects in real-world scenes: Evidence from eye movements. Journal of Experimental Psychology: Human Perception and Performance, 31, 857–868. pdf.
  • Brockmole, J. R., & Henderson, J. M. (2005b). Object appearance, disappearance, and attention prioritization in real-world scenes. Psychonomic Bulletin & Review, 12, 1061–1067.
  • Brosch, T., Sander, D., Pourtois, G., & Scherer, K. R. (2008). Beyond fear rapid spatial orienting toward positive emotional stimuli. Psychological Science, 19(4), 362–370.
  • Brosch, T., Sander, D., & Scherer, K. R. (2007). That baby caught my eye … attention capture by infant faces. Emotion, 7(3), 685–689.
  • Carlisle, N. B., Arita, J. T., Pardo, D., & Woodman, G. F. (2011). Attentional templates in visual working memory. The Journal of Neuroscience, 31(25), 9315–9322.
  • Carlisle, N. B., & Woodman, G. F. (2011a). Automatic and strategic effects in the guidance of attention by working memory representations. Acta Psychologica, 137(2), 217–225.
  • Carlisle, N. B., & Woodman, G. F. (2011b). When memory is not enough: Electrophysiological evidence for goal-dependent use of working memory representations in guiding visual attention. Journal of Cognitive Neuroscience, 23(10), 2650–2664.
  • Cosman, J. D., & Vecera, S. P. (2010). Attentional capture by motion onsets is modulated by perceptual load. Attention, Perception, & Psychophysics, 72(8), 2096–2105.
  • De Groot, F., Huettig, F., & Olivers, C. N. (2016). When meaning matters: The temporal dynamics of semantic influences on visual attention. Journal of Experimental Psychology: Human Perception and Performance, 42(2), 180–196.
  • Dombrowe, I., Olivers, C. N., & Donk, M. (2010). The time course of working memory effects on visual attention. Visual Cognition, 18(8), 1089–1112.
  • Downing, P., & Dodds, C. (2004). Competition in visual working memory for control of search. Visual Cognition, 11(6), 689–703.
  • Eckstein, M. P. (2011). Visual search: A retrospective. Journal of Vision, 11(5), 14–14.
  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.
  • Field, M., Duka, T., Eastwood, B., Child, R., Santarcangelo, M., & Gayton, M. (2007). Experimental manipulation of attentional biases in heavy drinkers: Do the effects generalise? Psychopharmacology, 192(4), 593–608.
  • Field, M., Mogg, K., & Bradley, B. P. (2004). Eye movements to smoking-related cues: Effects of nicotine deprivation. Psychopharmacology, 173(1-2), 116–123.
  • Field, M., Mogg, K., Zetteler, J., & Bradley, B. P. (2004). Attentional biases for alcohol cues in heavy and light social drinkers: The roles of initial orienting and maintained attention. Psychopharmacology, 176(1), 88–93.
  • Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 847–858.
  • Folk, C. L., & Remington, R. (2006). Top-down modulation of preattentive processing: Testing the recovery account of contingent capture. Visual Cognition, 14(4-8), 445–465.
  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030–1044.
  • Forster, S., & Lavie, N. (2008a). Failures to ignore entirely irrelevant distractors: The role of load. Journal of Experimental Psychology: Applied, 14(1), 73–83.
  • Forster, S., & Lavie, N. (2008b). Attentional capture by entirely irrelevant distractors. Visual Cognition, 16(2-3), 200–214.
  • Fox, E., Russo, R., Bowles, R., & Dutton, K. (2001). Do threatening stimuli draw or hold visual attention in subclinical anxiety? Journal of Experimental Psychology: General, 130(4), 681–700.
  • Gaspelin, N., & Luck, S. J. (2018). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30(9), 1–16.
  • Georgiou, G., Bleakley, C., Hayward, J., Russo, R., Dutton, K., Eltiti, S., & Fox, E. (2005). Focusing on fear: Attentional disengagement from emotional faces. Visual Cognition, 12(1), 145–158.
  • Gibson, B. S., & Jiang, Y. (1998). Surprise! An unexpected color singleton does not capture attention in visual search. Psychological Science, 9(3), 176–182.
  • Gibson, B. S., & Kelsey, E. M. (1998). Stimulus-driven attentional capture is contingent on attentional set for displaywide visual features. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 699–706.
  • Gunseli, E., Olivers, C. N., & Meeter, M. (2016). Task-irrelevant memories rapidly gain attentional control with learning. Journal of Experimental Psychology: Human Perception and Performance, 42(3), 354–362.
  • Harris, J. A., Donohue, S. E., Ilse, A., Schoenfeld, M. A., Heinze, H. J., & Woldorff, M. G. (2018). EEG measures of brain activity reveal that smoking-related images capture the attention of smokers outside of awareness. Neuropsychologia, 111, 324–333.
  • Hickey, C., Chelazzi, L., & Theeuwes, J. (2010a). Reward changes salience in human vision via the anterior cingulate. The Journal of Neuroscience, 30(33), 11096–11103.
  • Hickey, C., Chelazzi, L., & Theeuwes, J. (2010b). Reward guides vision when it's your thing: Trait reward-seeking in reward-mediated visual priming. PLoS One, 5(11), e14087.
  • Horstmann, G. (2002). Evidence for attentional capture by a surprising color singleton in visual search. Psychological Science, 13(6), 499–505.
  • Horstmann, G. (2005). Attentional capture by an unannounced color singleton depends on expectation discrepancy. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 1039–1060.
  • Hutchinson, J. B., & Turk-Browne, N. B. (2012). Memory-guided attention: Control from multiple memory systems. Trends in Cognitive Sciences, 16(12), 576–579.
  • Jonides, J., & Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing attention. Perception & Psychophysics, 43(4), 346–354.
  • Khetrapal, N. (2010). Load theory of selective attention and the role of perceptual load: Is it time for revision? European Journal of Cognitive Psychology, 22(1), 149–156.
  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863.
  • Lamy, D., Antebi, C., Aviani, N., & Carmel, T. (2008). Priming of pop-out provides reliable measures of target activation and distractor inhibition in selective attention. Vision Research, 48(1), 30–41.
  • Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451–468.
  • Lavie, N. (2005). Distracted and confused? Selective attention under load. Trends in Cognitive Sciences, 9, 75–82.
  • Lavie, N., & Cox, S. (1997). On the efficiency of attentional selection: Efficient visual search results in inefficient distractor rejection. Psychological Science, 8, 395–396.
  • Leppink, J., O’Sullivan, P., & Winston, K. (2017). Evidence against vs. in favour of a null hypothesis. Perspectives on Medical Education, 6(2), 115–118.
  • Loftus, G. R., & Mackworth, N. H. (1978). Cognitive determinants of fixation location during picture viewing. Journal of Experimental Psychology: Human Perception and Performance, 4(4), 565–572.
  • Mackworth, N. H., & Morandi, A. J. (1967). The gaze selects informative details within pictures. Perception & Psychophysics, 2(11), 547–552.
  • Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22(6), 657–672.
  • Matsukura, M., Brockmole, J. R., & Henderson, J. M. (2009). Overt attentional prioritization of new objects and feature changes during real-world scene viewing. Visual Cognition, 17, 835–855.
  • Moores, E., Laiti, L., & Chelazzi, L. (2003). Associative knowledge controls deployment of visual selective attention. Nature Neuroscience, 6(2), 182–189.
  • Murphy, G., Groeger, J. A., & Greene, C. M. (2016). Twenty years of load theory—Where are we now, and where should we go next? Psychonomic Bulletin & Review, 23(5), 1316–1340.
  • Nakayama, K., & Martini, P. (2011). Situating visual search. Vision Research, 51(13), 1526–1537.
  • Neisser, U. (1963). Decision-time without reaction-time: Experiments in visual scanning. The American Journal of Psychology, 76(3), 376–385.
  • Neo, G., & Chua, F. K. (2006). Capturing focused attention. Perception & Psychophysics, 68(8), 1286–1296.
  • Olivers, C. N. (2009). What drives memory-driven attentional capture? The effects of memory type, display type, and search type. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1275–1291.
  • Olivers, C. N. (2011). Long-term visual associations affect attentional guidance. Acta Psychologica, 137(2), 243–247.
  • Olivers, C. N., & Humphreys, G. W. (2002). When visual marking meets the attentional blink: More evidence for top-down, limited-capacity inhibition. Journal of Experimental Psychology: Human Perception and Performance, 28(1), 22–42.
  • Olivers, C. N., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1243–1265.
  • Pollmann, S., Weidner, R., Humphreys, G. W., Olivers, C. N., Müller, K., Lohmann, G., … Watson, D. G. (2003). Separating distractor rejection and target detection in posterior parietal cortex—an event-related fMRI study of visual marking. NeuroImage, 18(2), 310–323.
  • Ro, T., Friggel, A., & Lavie, N. (2009). Musical expertise modulates the effects of visual perceptual load. Attention, Perception, & Psychophysics, 71(4), 671–674.
  • Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237.
  • Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 248–261.
  • Soto, D., & Humphreys, G. W. (2007). Automatic guidance of visual attention from verbal working memory. Journal of Experimental Psychology: Human Perception and Performance, 33(3), 730–737.
  • Stutts, J. C., Reinfurt, D. W., Staplin, L., & Rodgman, E. A. (2001). The role of driver distraction in traffic crashes. Washington, DC: AAA Foundation for Traffic Safety.
  • Tatler, B. W., Brockmole, J. R., & Carpenter, R. H. S. (2017). LATEST: A model of saccadic decisions in space and time. Psychological Review, 124, 267–300.
  • Telling, A. L., Kumar, S., Meyer, A. S., & Humphreys, G. W. (2010). Electrophysiological evidence of semantic interference in visual search. Journal of Cognitive Neuroscience, 22(10), 2212–2225.
  • Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599–606.
  • Theeuwes, J. (1994). Stimulus-driven capture and attentional set: Selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 799–806.
  • Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77–99.
  • Theeuwes, J., & Burger, R. (1998). Attentional control during visual search: The effect of irrelevant singletons. Journal of Experimental Psychology: Human Perception and Performance, 24(5), 1342–1353.
  • Theeuwes, J., De Vries, G. J., & Godijn, R. (2003). Attentional and oculomotor capture with static singletons. Perception & Psychophysics, 65(5), 735–746.
  • Theeuwes, J., Kramer, A. F., Hahn, S., & Irwin, D. E. (1998). Our eyes do not always go where we want them to go: Capture of the eyes by new objects. Psychological Science, 9(5), 379–385.
  • Theeuwes, J., Kramer, A. F., Hahn, S., Irwin, D. E., & Zelinsky, G. J. (1999). Influence of attentional capture on oculomotor control. Journal of Experimental Psychology: Human Perception and Performance, 25(6), 1595–1608.
  • Turatto, M., & Galfano, G. (2000). Color, form and luminance capture attention in visual search. Vision Research, 40(13), 1639–1643.
  • Van Zoest, W., Donk, M., & Theeuwes, J. (2004). The role of stimulus-driven and goal- driven control in saccadic visual selection. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 746–759.
  • Vatterott, D. B., Mozer, M. C., & Vecera, S. P. (2018). Rejecting salient distractors: Generalization from experience. Attention, Perception, & Psychophysics, 80(2), 485–499.
  • Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin & Review, 19(5), 871–878.
  • Watson, D. G., & Humphreys, G. W. (1997). Visual marking: Prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychological Review, 104, 90–122.
  • Watson, D. G., & Humphreys, G. W. (1998). Visual marking of moving objects: A role for top-down feature-based inhibition in selection. Journal of Experimental Psychology: Human Perception & Performance, 24, 946–962.
  • Watson, D. G., & Humphreys, G. W. (2000). Visual marking: Evidence for inhibition using a probe-dot detection paradigm. Perception & Psychophysics, 62(3), 471–481.
  • Watson, D. G., Humphreys, G. W., & Olivers, C. N. (2003). Visual marking: Using time in visual selection. Trends in Cognitive Sciences, 7(4), 180–186.
  • Wolfe, J. M. (2012). Saved by a log how do humans perform hybrid visual and memory search? Psychological Science, 23(7), 698–703.
  • Woodman, G. F., Carlisle, N. B., & Reinhart, R. M. (2013). Where do we store the memory representations that guide attention? Journal of Vision, 13(3), 1–1.
  • Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33(2), 363–377.
  • Wright, T. J., Boot, W. R., & Brockmole, J. R. (2015). Functional fixedness: The functional significance of delayed disengagement based on attention set. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 17–21.
  • Wyble, B., Folk, C., & Potter, M. C. (2013). Contingent attentional capture by conceptually relevant images. Journal of Experimental Psychology: Human Perception and Performance, 39(3), 861–871.
  • Xie, W., & Zhang, W. (2017). Familiarity increases the number of remembered Pokémon in visual short-term memory. Memory & Cognition, 45(4), 677–689.
  • Yantis, S. (1996). Attentional capture in vision. In A. F. Kramer, M. G. H. Coles, & G. D. Logan (Eds.), Converging operations in the study of visual selective attention (pp. 45–76). Washington, DC: American Psychological Association.
  • Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 121–134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.