364
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Distractor-interference reduction is dimensionally constrained

, &
Pages 247-259 | Received 28 Jun 2018, Accepted 09 Dec 2018, Published online: 16 Jan 2019

References

  • Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55, 485–496. doi: 10.3758/BF03205306
  • Bauer, B., Jolicoeur, P., & Cowan, W. B. (1996a). Distractor heterogeneity versus linear separability in colour visual search. Perception, 25, 1281–1293. doi: 10.1068/p251281
  • Bauer, B., Jolicoeur, P., & Cowan, W. B. (1996b). Visual search for colour targets that are or are not linearly separable from distractors. Vision Research, 36, 1439–1466. doi: 10.1016/0042-6989(95)00207-3
  • Becker, S. I. (2010). The role of target–distractor relationships in guiding attention and the eyes in visual search. Journal of Experimental Psychology: General, 139, 247–265. doi: 10.1037/a0018808
  • Becker, S. I., Folk, C. L., & Remington, R. W. (2010). The role of relational information in contingent capture. Journal of Experimental Psychology: Human Perception and Performance, 36, 1460–1476. doi: 10.1037/a0020370
  • Becker, S. I., Folk, C. L., & Remington, R. W. (2013). Attentional capture does not depend on feature similarity, but on target-nontarget relations. Psychological Science, 24, 634–647. doi: 10.1177/0956797612458528
  • Burra, N., & Kerzel, D. (2013). Attentional capture during visual search is attenuated by target predictability: Evidence from the N2pc, Pd, and topographic segmentation. Psychophysiology, 50, 422–430. doi: 10.1111/psyp.12019
  • Chan, L. H., & Hayward, W. G. (2009). Feature integration theory revisited: Dissociating feature detection and attentional guidance in visual search. Journal of Experimental Psychology: Human Perception and Performance, 35, 119–132. doi: 10.1037/0096-1523.35.1.119
  • Daoutis, C. A., Pilling, M., & Davies, I. L. (2006). Categorical effects in visual search for colour. Visual Cognition, 14, 217–240. doi: 10.1080/13506280500158670
  • Derrington, A. M., Krauskopf, J., & Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. The Journal of Physiology, 357, 241–265. doi: 10.1113/jphysiol.1984.sp015499
  • De Valois, R. L., Abramov, I., & Jacobs, G. H. (1966). Analysis of response patterns of LGN cells. Journal of the Optical Society of America, 56, 966–977. doi: 10.1364/JOSA.56.000966
  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458. doi: 10.1037/0033-295X.96.3.433
  • D'Zmura, M. (1991). Color in visual search. Vision Research, 31, 951–966. doi: 10.1016/0042-6989(91)90203-H
  • Egeth, H. E., Leonard, C. J., & Leber, A. B. (2010). Why salience is not enough: Reflections on top-down selection in vision. Acta Psychologica, 135, 130–132. doi: 10.1016/j.actpsy.2010.05.012
  • Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99, 225–234. doi: 10.1016/0013-4694(96)95711-9
  • Folk, C. L., & Anderson, B. A. (2010). Target-uncertainty effects in attentional capture: Color-singleton set or multiple attentional control settings? Psychonomic Bulletin & Review, 17, 421–426. doi: 10.3758/PBR.17.3.421
  • Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24, 847–858. doi: 10.1037/0096-1523.24.3.847
  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044. doi: 10.1037/0096-1523.18.4.1030
  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1993). Contingent attentional capture: A reply to Yantis (1993). Journal of Experimental Psychology: Human Perception and Performance, 19, 682–685. doi: 10.1037/0096-1523.19.3.682
  • Found, A., & Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: Investigating a “dimension-weighting” account. Perception & Psychophysics, 58, 88–101. doi: 10.3758/BF03205479
  • Fukuda, K., & Vogel, E. K. (2011). Individual differences in recovery time from attentional capture. Psychological Science, 22, 361–368. doi: 10.1177/0956797611398493
  • Gaspar, J. M., & McDonald, J. J. (2014). Suppression of salient objects prevents distraction in visual search. Journal of Neuroscience, 34, 5658–5666. doi: 10.1523/JNEUROSCI.4161-13.2014
  • Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26, 1740–1750. doi: 10.1177/0956797615597913
  • Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, & Psychophysics, 79, 45–62. doi: 10.3758/s13414-016-1209-1
  • Gaspelin, N., & Luck, S. J. (2018b). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22, 79–92. doi: 10.1016/j.tics.2017.11.001
  • Gaspelin, N. & Luck, S.J. (2018a). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience. Advance online publication. doi: 10.1162/jocn_a_01279
  • Gaspelin, N., Ruthruff, E., & Lien, M. (2016). The problem of latent attentional capture: Easy visual search conceals capture by task-irrelevant abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 42, 1104–1120. doi: 10.1037/xhp0000214
  • Harris, A. M., Becker, S. I., & Remington, R. W. (2015). Capture by colour: Evidence for dimension-specific singleton capture. Attention, Perception, & Psychophysics, 77, 2305–2321. doi: 10.3758/s13414-015-0927-0
  • Heathcote, A., Brown, S., & Mewhort, D. K. (2002). Quantile maximum likelihood estimation of response time distributions. Psychonomic Bulletin & Review, 9, 394–401. doi: 10.3758/BF03196299
  • Heitz, R. P. (2014). The speed-accuracy tradeoff: History, physiology, methodology, and behavior. Frontiers in Neuroscience, 8, 150. doi: 10.3389/fnins.2014.00150
  • Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21, 760–775. doi: 10.1162/jocn.2009.21039
  • Hickey, C., McDonald, J. J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of visual attention. Journal of Cognitive Neuroscience, 18, 604–613. doi: 10.1162/jocn.2006.18.4.604
  • Hulleman, J., & Olivers, C. L. (2017). The impending demise of the item in visual search. Behavioral and Brain Sciences, 40, e132. doi: 10.1017/S0140525X15002794
  • Irons, J. L., & Leber, A. B. (2016). Choosing attentional control settings in a dynamically changing environment. Attention, Perception & Psychophysics, 78, 2031–2048. doi: 10.3758/s13414-016-1125-4
  • Jannati, A., Gaspar, J. M., & McDonald, J. J. (2013). Tracking target and distractor processing in fixed-feature visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 39, 1713–1730. doi: 10.1037/a0032251
  • Jarmasz, J., & Hollands, J. G. (2009). Confidence intervals in repeated-measures designs: The number of observations principle. Canadian Journal of Experimental Psychology, 63, 124–138. doi: 10.1037/a0014164
  • Kong, G., Alais, D., & van der Burg, E. (2016). An investigation of linear separability in visual search for color suggests a role of recognizability. Journal of Experimental Psychology: Human Perception and Performance, 42, 1724–1738. doi: 10.1037/xhp0000249
  • Kumada, T. (1999). Limitations in attending to a feature value for overriding stimulus-driven interference. Perception & Psychophysics, 61, 61–79. doi: 10.3758/BF03211949
  • Leber, A. B., & Egeth, H. E. (2006). It's under control: Top-down search strategies can override attentional capture. Psychonomic Bulletin & Review, 13, 132–138. doi: 10.3758/BF03193824
  • Leber, A. B., Lechak, J. R., & Tower-Richardi, S. M. (2013). What do fast response times tell us about attentional control? Journal of Vision, 13(3), 31. doi: 10.1167/13.3.31
  • Lien, M.-C., Ruthruff, E., Goodin, Z., & Remington, R. W. (2008). Contingent attentional capture by top-down control settings: Converging evidence from event-related potentials. Journal of Experimental Psychology: Human Perception and Performance, 34, 509–530. doi: 10.1037/0096-1523.34.3.509
  • Lien, M.-C., Ruthruff, E., & Johnston, J. C. (2010). Attentional capture with rapidly changing attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 36, 1–16. doi: 10.1037/a0015875
  • Liesefeld, H. R., Fu, X., & Zimmer, H. D. (2015). Fast and careless or careful and slow? Apparent holistic processing in mental rotation is explained by speed-accuracy trade-offs. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 1140–1151. doi: 10.1037/xlm0000081
  • Liesefeld, H. R., & Janczyk, M. (2019). Combining speed and accuracy to control for speed-accuracy tradeoffs (?). Behavior Research Methods. Advance online publication. doi: 10.3758/s13428-018-1076-x
  • Liesefeld, H. R., Liesefeld, A. M., Müller, H. J., & Rangelov, D. (2017). Saliency maps for finding changes in visual scenes? Attention, Perception, and Psychophysics, 79, 2190–2201. doi: 10.3758/s13414-017-1383-9
  • Liesefeld, H. R., Liesefeld, A. M., Pollmann, S., & Müller, H. J. (in press). Biasing allocations of attention via selective weighting of saliency signals: Behavioral and neuroimaging evidence for the dimension-weighting account. In T. Hodgson (Ed.), Current topics in behavioral neurosciences: Processes of visuo-spatial attention and working memory. Berlin: Springer.
  • Liesefeld, H. R., Liesefeld, A. M., Töllner, T., & Müller, H. J. (2017). Attentional capture in visual search: Capture and post-capture dynamics revealed by EEG. Neuroimage, 156, 166–173. doi: 10.1016/j.neuroimage.2017.05.016
  • Liesefeld, H. R., Moran, R., Usher, M., Müller, H. J., & Zehetleitner, M. (2016). Search efficiency as a function of target saliency: The transition from inefficient to efficient search and beyond. Journal of Experimental Psychology: Human Perception and Performance, 42, 821–836. doi: 10.1037/xhp0000156
  • Liesefeld, H. R., & Müller, H. J. (under review). Distractor handling via dimension weighting.
  • Lindsey, D. T., Brown, A. M., Reijnen, E., Rich, A. N., Kuzmova, Y. I., & Wolfe, J. M. (2010). Color channels, not color appearance or color categories, guide visual search for desaturated color targets. Psychological Science, 21, 1208–1214. doi: 10.1177/0956797610379861
  • Loftus, G. R., & Masson, M. J. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1, 476–490. doi: 10.3758/BF03210951
  • Luce, R. D. (1986). Response times: Their role in inferring elementary mental organisation ( Oxford Psychology Series; no.8). New York, NY: Oxford University Press.
  • Luck, S. J., & Hillyard, S. A. (1994a). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31, 291–308. doi: 10.1111/j.1469-8986.1994.tb02218.x
  • Luck, S. J., & Hillyard, S. A. (1994b). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20, 1000–1014. doi: 10.1037/0096-1523.20.5.1000
  • Meeter, M., & Olivers, C. N. L. (2006). Intertrial priming stemming from ambiguity: A new account of priming in visual search. Visual Cognition, 13, 202–222. doi: 10.1080/13506280500277488
  • Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14, 247–279. doi: 10.1016/0010-0285(82)90010-X
  • Moran, R., Liesefeld, H. R., Usher, M., & Müller, H. J. (2017). An appeal against the item's death sentence: Accounting for diagnostic data patterns with an item-based model of visual search. Behavioral and Brain Sciences, 40, e148. doi: 10.1017/S0140525X16000182
  • Moran, R., Zehetleitner, M., Liesefeld, H. R., Müller, H. J., & Usher, M. (2016). Serial vs. parallel models of attention in visual search: Accounting for benchmark RT-distributions. Psychonomic Bulletin & Review, 23, 1300–1315. doi: 10.3758/s13423-015-0978-1
  • Moran, R., Zehetleitner, M., Müller, H. J., & Usher, M. (2013). Competitive guided search: Meeting the challenge of benchmark RT distributions. Journal of Vision, 13(8), 24. doi: 10.1167/13.8.24
  • Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception & Psychophysics, 57, 1–17. doi: 10.3758/BF03211845
  • Müller, H. J., & Krummenacher, J. (2006). Locus of dimension weighting: Preattentive or postselective? Visual Cognition, 14, 490–513. doi: 10.1080/13506280500194154
  • Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effects in dimensional weighting. Journal of Experimental Psychology: Human Perception and Performance, 29, 1021–1035. doi: 10.1037/0096-1523.29.5.1021
  • Narbutas, V., Lin, Y., Kristan, M., & Heinke, D. (2017). Serial versus parallel search: A model comparison approach based on reaction time distributions. Visual Cognition, 25, 306–325. doi: 10.1080/13506285.2017.1352055
  • Olivers, C. N. L., & Meeter, M. (2006). On the dissociation between compound and present/absent tasks in visual search: Intertrial priming is ambiguity driven. Visual Cognition, 13, 1–28. doi: 10.1080/13506280500308101
  • Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15, 327–334. doi: 10.1016/j.tics.2011.05.004
  • Pachella, R. G. (1974). The interpretation of reaction time in information processing research. In B. H. Kantowitz (Ed.), Human information processing: Tutorials in performance and cognition (pp. 41–82). Hillsdale, NJ: Erlbaum.
  • Sauter, M., Liesefeld, H. R., Zehetleitner, M., & Müller, H. J. (2018). Region-based shielding of visual search from salient distractors: Target detection is impaired with same- but not different-dimension distractors. Attention, Perception, & Psychophysics, 80, 622–642. doi: 10.3758/s13414-017-1477-4
  • Sawaki, R., Geng, J. J., & Luck, S. J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32, 10725–10736. doi: 10.1523/JNEUROSCI.1864-12.2012
  • Schubö, A., & Müller, H. J. (2009). Selecting and ignoring salient objects within and across dimensions in visual search. Brain Research, 1283, 84–101. doi: 10.1016/j.brainres.2009.05.077
  • Schwarz, W., & Miller, J. (2016). GSDT: An integrative model of visual search. Journal of Experimental Psychology: Human Perception and Performance, 42, 1654–1675. doi: 10.1037/xhp0000247
  • Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12, 342–348. doi: 10.1016/j.tics.2008.05.007
  • Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. Perception & Psychophysics, 50, 184–193. doi: 10.3758/BF03212219
  • Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51, 599–606. doi: 10.3758/BF03211656
  • Theeuwes, J. (2010). Top–down and bottom–up control of visual selection. Acta Psychologica, 135, 77–99. doi: 10.1016/j.actpsy.2010.02.006
  • Toffanin, P., de Jong, R., & Johnson, A. (2011). The P4pc: An electrophysiological marker of attentional disengagement? International Journal of Psychophysiology, 81, 72–81. doi: 10.1016/j.ijpsycho.2011.05.010
  • Töllner, T., Müller, H. J., & Zehetleitner, M. (2012). Top-down dimensional weight set determines the capture of visual attention: Evidence from the PCN component. Cerebral Cortex, 22, 1554–1563. doi: 10.1093/cercor/bhr231
  • Ulrich, R., Miller, J., & Schröter, H. (2007). Testing the race model inequality: An algorithm and computer programs. Behavior Research Methods, 39, 291–302. doi: 10.3758/BF03193160
  • van Zoest, W., & Donk, M. (2004). Bottom-up and top-down control in visual search. Perception, 33, 927–937. doi: 10.1068/p5158
  • Wolfe, J. M., Friedman-Hill, S. R., Stewart, M. I., & O'Connell, K. M. (1992). The role of categorization in visual search for orientation. Journal of Experimental Psychology: Human Perception and Performance, 18, 34–49. doi: 10.1037/0096-1523.18.1.34
  • Wolfe, J. M., Palmer, E. M., & Horowitz, T. S. (2010). Reaction time distributions constrain models of visual search. Vision Research, 50, 1304–1311. doi: 10.1016/j.visres.2009.11.002
  • Zehetleitner, M., Goschy, H., & Müller, H. J. (2012). Top-down control of attention: It's gradual, practice-dependent, and hierarchically organized. Journal of Experimental Psychology: Human Perception and Performance, 38, 941–957. doi: 10.1037/a0027629

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.