1,958
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Memory-based attentional biases survive spatial suppression driven by selection history

, &
Pages 343-350 | Received 27 Jun 2018, Accepted 05 Feb 2019, Published online: 05 Mar 2019

References

  • Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443. doi: 10.1016/j.tics.2012.06.010
  • Bahle, B., Beck, V. M., & Hollingworth, A. (2018). The Architecture of interaction between visual working memory and visual attention. Journal of Experimental Psychology: Human Perception and Performance. doi: 10.1037/xhp0000509
  • Carlisle, N. B., & Woodman, G. F. (2011). Automatic and strategic effects in the guidance of attention by working memory representations. Acta Psychologica, 137(2), 217–225. doi: 10.1016/j.actpsy.2010.06.012
  • Dalvit, S., & Eimer, M. (2011). Memory-driven attentional capture is modulated by temporal task demands. Visual Cognition, 19(2), 145–153. doi: 10.1080/13506285.2010.543441
  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience. doi: 10.1146/annurev.ne.18.030195.001205
  • Egeth, H. E., & Yantis, S. (1997). Visual attention: Control, representation, and time course. Annual Review of Psychology. doi: 10.1146/annurev.psych.48.1.269
  • Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience. doi: 10.1162/jocn.2008.20099
  • Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2017). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex. doi: 10.1016/j.cortex.2017.09.027
  • Fratescu, M., van Moorselaar, D., & Mathot, S. (2018). Can you have multiple attentional templates? Large-scale replications of Van Moorselaar, Theeuwes and Olivers (2014) and Hollingworth and Beck (2016). BioRxiv, 474932.
  • Gaspelin, N., & Luck, S. J. (2018). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1), 79–92. doi: 10.1016/j.tics.2017.11.001
  • Hollingworth, A., & Luck, S. J. (2009). The role of visual working memory (VWM) in the control of gaze during visual search. Attention, Perception, and Psychophysics. doi: 10.3758/APP.71.4.936
  • Hollingworth, A., Matsukura, M., & Luck, S. J. (2013). Visual working memory Modulates Rapid Eye movements to Simple Onset targets. Psychological Science, 24(5), 790–796. doi: 10.1177/0956797612459767
  • JASP TEAM. (2018). JASP (Version 0.8) [Mac OS]. Retrieved from https://jasp-stats.org/
  • Jiang, Y. V., Sha, L. Z., & Remington, R. W. (2015). Modulation of spatial attention by goals, statistical learning, and monetary reward. Attention, Perception, and Psychophysics. doi: 10.3758/s13414-015-0952-z
  • Jiang, Y. V., Swallow, K. M., & Rosenbaum, G. M. (2013). Guidance of spatial attention by incidental learning and endogenous cuing. Journal of Experimental Psychology: Human Perception and Performance. doi: 10.1037/a0028022
  • Kiyonaga, A., Egner, T., & Soto, D. (2012). Cognitive control over working memory biases of selection. Psychonomic Bulletin and Review, 19(4), 639–646. doi: 10.3758/s13423-012-0253-7
  • Mathot, S., Schreij, D., & Theeuwes, J. (2012). Opensesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods. doi: 10.3758/s13428-011-0168-7
  • Munsell, A. H. (1929). Munsell book of color. Baltimore, MD: Munsell Color Company.
  • Olivers, C. N. L. (2009). What drives memory-driven attentional capture? The effects of memory type, display type, and search type. Journal of Experimental Psychology. Human Perception and Performance, 35(5), 1275–1291. doi: 10.1037/a0013896
  • Olivers, C. N. L., Meijer, F., & Theeuwes, J. (2006a). Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology. Human Perception and Performance, 32(5), 1243–1265. doi: 10.1037/0096-1523.32.5.1243
  • Olivers, C. N. L., Meijer, F., & Theeuwes, J. (2006b). Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1243–1265. doi: 10.1037/0096-1523.32.5.1243
  • Pan, Y., & Soto, D. (2010). The modulation of perceptual selection by working memory is dependent on the focus of spatial attention. Vision Research, 50(15), 1437–1444. doi: 10.1016/j.visres.2009.10.016
  • Peirce, J. W. (2007). PsychoPy – psychophysics software in python. Journal of Neuroscience Methods. doi: 10.1016/j.jneumeth.2006.11.017
  • Reder, L. M., Weber, K., Shang, J., & Vanyukov, P. M. (2003). The adaptive Character of the attentional system: Statistical Sensitivity in a target Localization task. Journal of Experimental Psychology: Human Perception and Performance. doi: 10.1037/0096-1523.29.3.631
  • Sawaki, R., & Luck, S. J. (2011). Active suppression of distractors that match the contents of visual working memory. Visual cognition, 19(7), 956–972. doi: 10.1080/13506285.2011.603709
  • Silvis, J. D., & Van der Stigchel, S. (2014). How memory mechanisms are a key component in the guidance of our eye movements: Evidence from the global effect. Psychonomic Bulletin and Review. doi: 10.3758/s13423-013-0498-9
  • Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 248–261. doi: 10.1037/0096-1523.31.2.248
  • Stilwell, B. T., Bahle, B., & Vecera, S. P. (2018). Feature-based statistical regularities of distractors modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance. doi:10.1037/xhp0000613
  • Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica. doi: 10.1016/j.actpsy.2010.02.006
  • Theeuwes, J. (2018). Visual selection: Usually fast and automatic; seldom slow and volitional. Journal of Cognition. doi: 10.5334/joc.13
  • van Loon, A. M., Olmos-Solis, K., & Olivers, C. N. L. (2017). Subtle eye movement metrics reveal task-relevant representations prior to visual search. Journal of Vision. doi: 10.1167/17.6.13
  • van Moorselaar, D., Gayet, S., Paffen, C. L. E., Theeuwes, J., Van der Stigchel, S., & Olivers, C. N. L. (2018). Competitive interactions in visual working memory drive access to awareness. Cortex, 102, 6–13. doi: 10.1016/j.cortex.2017.03.026
  • van Moorselaar, D., Theeuwes, J., & Olivers, C. N. L. (2014). In competition for the attentional template: Can multiple items within visual working memory guide attention? Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1450–1464. doi: 10.1037/a0036229
  • Wang, B., & Theeuwes, J. (2018a). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, and Psychophysics. doi: 10.3758/s13414-018-1493-z
  • Wang, B., & Theeuwes, J. (2018b). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance. doi: 10.1037/xhp0000472
  • Wang, B., & Theeuwes, J. (2018c). Statistical regularities modulate attentional capture independent of search strategy. Attention, Perception, & Psychophysics, 80(7), 1763–1774. doi: 10.3758/s13414-018-1562-3
  • Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E.-J. (2011). Statistical evidence in experimental psychology. Perspectives on Psychological Science. doi: 10.1177/1745691611406923
  • Yantis, S., & Egeth, H. E. (1999). On the distinction between visual salience and stimulus-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance. doi: 10.1037/0096-1523.25.3.661
  • Zelinsky, G. J., & Bisley, J. W. (2015). The what, where, and why of priority maps and their interactions with visual working memory. Annals of the New York Academy of Sciences. doi: 10.1111/nyas.12606