265
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Dealing with distractors in the spatial cueing paradigm can reflect the strategic influence of cognitive effort minimization rather than a limit to selective attention

ORCID Icon &
Pages 367-383 | Received 01 Jul 2018, Accepted 28 Feb 2019, Published online: 12 Mar 2019

References

  • Allport, G. W. (1954). The nature of prejudice. Reading: Addison-Wesley.
  • Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55(5), 485–496.
  • Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.
  • Biggs, A. T., & Gibson, B. S. (2014). Visual salience can co-exist with dilution during visual selection. Journal of Experimental Psychology: Human Perception and Performance, 40, 7–14.
  • Braver, T. S. (2012). The variable nature of cognitive control: A dual-mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113.
  • Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 76–106). New York: Oxford University Press.
  • Bugg, J. M., & Crump, M. J. C. (2012). In support of a distinction between voluntary and stimulus-driven control: A review of the literature on proportion congruent effects. Frontiers in Psychology, 3, 1–16.
  • Bugg, J. M., Jacoby, L. L., & Toth, J. P. (2008). Multiple levels of control in the Stroop task. Memory & Cognition, 36(8), 1484–1494.
  • Carlson, L. A. (2003). Using spatial language. The Psychology of Learning and Motivation, 43, 127–161.
  • Carlson, L. A., & Logan, G. D. (2001). Using spatial relations to select an object. Memory & Cognition, 29, 883–892.
  • Carlson, L. A., & Van Deman, S. R. (2004). The space in spatial language. Journal of Memory and Language, 51, 418–436.
  • Carlson, L. A., & Van Deman, S. R. (2008). Inhibition with a reference frame during the interpretation of spatial language. Cognition, 106, 384–407.
  • Carlson, L. A., West, R., Taylor, H. A., & Herndon, R. W. (2002). Neural correlates of spatial term use. Journal of Experimental Psychology: Human Perception and Performance, 28, 1391–1408.
  • Carlson-Radvansky, L. A., & Irwin, D. E. (1994). Reference frame activation during spatial term assignment. Journal of Memory and Language, 33, 646–671.
  • Carlson-Radvansky, L. A., & Jiang, Y. (1998). Inhibition accompanies reference-frame selection. Psychological Science, 9, 386–391.
  • Clark, H. H. (1973). Space, time, semantics, and the child. In T. E. Moore (Ed.), Cognitive development and the acquisition of language (pp. 27–63). New York: Academic Press.
  • Cools, R. (2016). The costs and benefits of brain dopamine for cognitive control. WIREs Cognitive Science, 7, 317–329.
  • Corballis, M. C. (1988). Recognition of disoriented shapes. Psychological Review, 95, 115–123.
  • Davis, G. J., & Gibson, B. S. (2012). Going rogue in the spatial cuing paradigm: High spatial validity is insufficient to elicit voluntary shifts of attention. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 1192–1201.
  • Dunn, T. L., Lutes, D. J. C., & Risko, E. F. (2016). Metacognitive evaluation in the avoidance of demand. Journal of Experimental Psychology: Human Perception and Performance, 42(9), 1372–1387.
  • Eckstein, M. K., Guerra-Carrillo, B., Miller Singley, A. T., & Bunge, S. A. (2017). Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive development? Developmental Cognitive Neuroscience, 25, 69–91.
  • Eriksen, C. W., & Collins, J. F. (1969). Temporal course of selective attention. Journal of Experimental Psychology, 80, 254–261.
  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149.
  • Eriksen, C. W., & Hoffman, J. E. (1972). Temporal and spatial characteristics of selective encoding from visual displays. Perception & Psychophysics, 12, 201–204.
  • Failing, M., & Theeuwes, J. (2018). Selection history: How reward modulates selectivity of visual attention. Psychonomic Bulletin & Review, 25, 514–538.
  • Forster, K. I., & Forster, J. C. (2003). Dmdx: A Windows display program with millisecond accuracy. Behavior Research Methods: Instruments and Computers, 35, 116–124.
  • Gaspar, J. M., & McDonald, J. J. (2014). Suppression of salient objects prevents distraction in visual search. Journal of Neuroscience, 34(16), 5658–5666.
  • Gibson, B. S., & Davis, G. J. (2011). Grounding spatial language in the motor system: Reciprocal interactions between spatial semantics and orienting. Visual Cognition, 19(1), 79–116.
  • Gibson, B. S., & Kingstone, A. (2005). Visual attention and the semantics of space: Beyond central and peripheral cues. Paper presented at the 46th annual meeting of the Psychonomic Society, Toronto, CA.
  • Gibson, B. S., & Kingstone, A. (2006). Visual attention and the semantics of space: Beyond central and peripheral cues. Psychological Science, 17, 622–627.
  • Gibson, B. S., Scheutz, M., & Davis, G. J. (2009). Symbolic control of visual attention: Semantic constraints on the spatial distribution of attention. Attention, Perception, & Psychophysics, 71, 363–374.
  • Gray, W. D., Sims, C. R., Fu, W.-T., & Schoelles, M. J. (2006). The soft constraints hypothesis: A rational analysis approach to resource allocation for interactive behavior. Psychological Review, 113(3), 461–482.
  • Hayes, T. R., & Petrov, A. A. (2015). Pupil diameter tracks the exploration-exploitation trade-off during analogical reasoning and explains individual differences in fluid intelligence. Journal of Cognitive Neuroscience, 28(2), 1–11.
  • Ho, C., & Spence, C. (2006). Verbal interface design: Do verbal directional cues automatically orient visual spatial attention? Computers in Human Behavior, 22, 733–748.
  • Hommel, B., Pratt, J., Colzato, L., & Godijn, R. (2001). Symbolic control of visual attention. Psychological Science, 12, 360–365.
  • Hull, C. L. (1943). Principles of behavior. New York: Appleton-Century.
  • Irons, J. L., & Leber, A. B. (2016). Choosing attentional control settings in a dynamically changing environment. Attention, Perception, & Psychophysics, 78(7), 2031–2048.
  • Irons, J. L., & Leber, A. B. (2018). Characterizing individual variation in the strategic use of attentional control. Journal of Experimental Psychology: Human Perception and Performance, 44(10), 1637–1654.
  • Johnson, D. N., & Yantis, S. (1995). Allocating visual attention: Tests of a two-process model. Journal of Experimental Psychology: Human Perception and Performance, 21, 1376–1390.
  • Kemmerer, D. (2006). The semantics of space: Integrating linguistic typology and cognitive neuroscience. Neuropsychologia, 44, 1607–1621.
  • Kool, W., & Botvinick, M. M. (2014). A labor/leisure tradeoff in cognitive control. Journal of Experimental Psychology: General, 143(1), 131–141.
  • Kool, M., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010). Decision making and the avoidance of cognitive demand. Journal of Experimental Psychology: General, 139(4), 665–682.
  • Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of subjective effort and task performance. Behavioral and Brain Sciences, 36(6), 661–679.
  • Landau, B., & Hoffman, J. E. (2012). Spatial representation: From gene to mind. New York: Oxford University Press.
  • Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 451–468.
  • Lavie, N. (2010). Attention, distraction, and cognitive control under load. Current Directions in Psychological Science, 19(3), 143–148.
  • Lavie, N., & Cox, S. (1997). On the efficiency of visual selective attention: Efficient visual search leads to inefficient distractor rejection. Psychological Science, 8, 395–396.
  • Leber, A. B., Gwinn, R. E., Hong, Y., & O’Toole, R. J. (2016). Implicitly learned suppression of irrelevant spatial locations. Psychonomic Bulletin & Review, 23, 1873–1881.
  • Levelt, W. J. M. (1984). Some perceptual limitations on talking about space. In A. J. van Doorn, W. A. de Grind, & J. J. Koenderink (Eds.), Limits on perception (pp. 323–358). Utrecht: VNU Science Press.
  • Levinson, S. C. (2003). Space in language and cognition. Cambridge: Cambridge University Press.
  • Lindsay, D. S., & Jacoby, L. L. (1994). Stroop process dissociations: The relationship between facilitation and interference. Journal of Experimental Psychology: Human Perception and Performance, 20(2), 219–234.
  • Logan, G. D. (1995). Linguistic and conceptual control of visual spatial attention. Cognitive Psychology, 28, 103–174.
  • Mayer, A. R., & Kosson, D. S. (2004). The effects of auditory and visual linguistic distractors on target localization. Neuropsychology, 18, 248–257.
  • McCloskey, M. (2009). Visual reflections: A perceptual deficit and its implications. New York: Oxford University Press.
  • Pauszek, J. R., & Gibson, B. S. (2016). High spatial validity is not sufficient to elicit voluntary shifts of attention. Attention, Perception, & Psychophysics, 78(7), 2110–2123.
  • Pauszek, J. R., & Gibson, B. S. (2018). The least costs hypothesis: A rational analysis approach to the voluntary symbolic control of attention. Journal of Experimental Psychology: Human Perception and Performance, 44(8), 1199–1215.
  • Pauszek, J. R., & Gibson, B. S. (in preparation). Explorations and exploitations of voluntary and involuntary control processes by the predictive brain in the spatial cueing paradigm.
  • Pauszek, J. R., Sztybel, P., & Gibson, B. S. (2017). Evaluating Amazon’s Mechanical Turk for psychological research on the symbolic control of attention. Behavior Research Methods, 49(6), 1969–1983.
  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.
  • Regier, T., & Carlson, L. A. (2001). Grounding spatial language in perception: An empirical and computational investigation. Journal of Experimental Psychology: General, 130, 273–298.
  • Ruthruff, E., & Gaspelin, N. (2018). Immunity to attentional capture at ignored locations. Attention, Perception, & Psychophysics, 80(2), 325–336.
  • Theeuwes, J. (2018). Visual selection: Usually fast and automatic; Seldom slow and volitional. Journal of Cognition, 1(1), 1–15.
  • Vecera, S. P., & Rizzo, M. (2004). What are you looking at? Impaired ‘social attention’ following frontal-lobe damage. Neuropsychologia, 42, 1657–1665.
  • Wilson, G. F. (2002). An analysis of mental workload in pilots during flight using multiple psychophysiological measures. The International Journal of Aviation Psychology, 12, 3–18.
  • Witzel, J., Cornelius, S., Witzel, N., Forster, K. I., & Forster, J. C. (2013). Testing the viability of webDMDX for masked priming experiments. The Mental Lexicon, 8, 421–449.
  • Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge: Addison-Wesley.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.