567
Views
9
CrossRef citations to date
0
Altmetric
Forthcoming Special Issue on: Visual Search and Selective Attention

Splitting the attentional spotlight? Evidence from attentional capture by successive eventsFootnote*

, &
Pages 518-536 | Received 17 Mar 2019, Accepted 03 May 2019, Published online: 20 May 2019

References

  • Ansorge, U., Horstmann, G., & Carbone, E. (2005). Top-down contingent capture by color: Evidence from RT distribution analyses in a manual choice reaction task. Acta Psychologica, 120(3), 243–266.
  • Bichot, N. P., Rossi, A. F., & Desimone, R. (2005). Parallel and serial neural mechanisms for visual search in macaque area V4. Science, 308(5721), 529–534.
  • Bisley, J. W., & Goldberg, M. E. (2003). Neuronal activity in the lateral intraparietal area and spatial attention. Science, 299, 81–86.
  • Busse, L., Katzner, S., & Treue, S. (2008). Temporal dynamics of neuronal modulation during exogenous and endogenous shifts of visual attention in macaque area MT. Proceedings of the National Academy of Sciences, 105(42), 16380–16385.
  • Carmel, T., & Lamy, D. (2014). The same-location cost is unrelated to attentional settings: An object-updating account. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1465–1478.
  • Cave, K. R., Bush, W. S., & Taylor, T. G. (2010). Split attention as part of a flexible attentional system for complex scenes: Comment on Jans, Peters, and De Weerd (2010). Psychological Review, 117(2), 685–695.
  • Chen, P., & Mordkoff, J. T. (2007). Contingent capture at a very short SOA: Evidence against rapid disengagement. Visual Cognition, 15(6), 637–646.
  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.
  • Duncan, J., Ward, R., & Shapiro, K. (1994). Direct measurement of attentional dwell time in human vision. Nature, 369, 313–315.
  • Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalogram Clinical Neurophysiology, 99, 225–234.
  • Eimer, M., & Grubert, A. (2014). Spatial attention can be allocated rapidly and in parallel to new visual objects. Current Biology, 24(2), 193–198.
  • Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 20(8), 1423–1433.
  • Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2013). G*power (version 3.1.7) [computer software]. Kiel, Germany: University of Kiel.
  • Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 847–858.
  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology Human Perception and Performance, 18, 1030–1044.
  • Geyer, T., Müller, H. J., & Krummenacher, J. (2007). Cross-trial priming of element positions in visual pop-out search is dependent on stimulus arrangement. Journal of Experimental Psychology: Human Perception and Performance, 33(4), 788–797.
  • Gokce, A., Geyer, T., Finke, K., Müller, H. J., & Töllner, T. (2014). What pops out in positional priming of pop-out: Insights from event-related EEG lateralizations. Frontiers in Psychology, 5, 688.
  • Gokce, A., Müller, H. J., & Geyer, T. (2015). Positional priming of visual pop-out search is supported by multiple spatial reference frames. Frontiers in Psychology, 6, 838.
  • Grubert, A., & Eimer, M. (2015). Rapid parallel attentional target selection in single-color and multiple-color visual search. Journal of Experimental Psychology: Human Perception and Performance, 41, 86–101.
  • Grubert, A., & Eimer, M. (2016). The speed of serial attention shifts in visual search: Evidence from the N2pc component. Journal of Cognitive Neuroscience, 28(2), 319–332.
  • Hilchey, M. D., Leber, A. B., & Pratt, J. (2018). Testing the role of response repetition in spatial priming in visual search. Attention, Perception, & Psychophysics, 80(6), 1362–1374.
  • Jans, B., Peters, J. C., & De Weerd, P. (2010). Visual spatial attention to multiple locations at once: The jury is still out. Psychological Review, 117(2), 637–682.
  • Kaptein, N. A., Theeuwes, J., & Van der Heijden, A. H. C. (1995). Search for a conjunctively defined target can be selectively limited to a color-defined subset of elements. Journal of Experimental Psychology: Human Perception and Performance, 21(5), 1053–1069.
  • Khayat, P. S., Spekreijse, H., & Roelfsema, P. R. (2006). Attention lights up new object representations before the old ones fade away. Journal of Neuroscience, 26(1), 138–142.
  • Lamy, D. (2005). Temporal expectations modulate attentional capture. Psychonomic Bulletin & Review, 12(6), 1112–1119.
  • Lamy, D., Alon, L., Carmel, T., & Shalev, N. (2015). The role of conscious perception in attentional capture and object-file updating. Psychological Science, 26(1), 48–57.
  • Lamy, D., Darnell, M., Levi, A., & Bublil, C. (2018). Testing the attentional dwelling hypothesis of attentional capture. Journal of Cognition, 1(43), 1–16.
  • Lamy, D., Leber, A., & Egeth, H. E. (2004). Effects of task relevance and stimulus-driven salience in feature-search mode. Journal of Experimental Psychology: Human Perception and Performance, 30(6), 1019–1031.
  • Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49(4), 764–766.
  • Luck, S. J., & Hillyard, S. A. (1990). Electrophysiological evidence for parallel and serial processing during visual search. Perception & Psychophysics, 48(6), 603–617.
  • Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20, 1000–1014.
  • Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception & Psychophysics, 58, 977–991.
  • Mazza, V., Turatto, M., Umiltà, C., & Eimer, M. (2007). Attentional selection and identification of visual objects are reflected distinct electrophysiological responses. Experimental Brain Research, 181, 531–536.
  • Moore, C. M., Egeth, H., Berglan, L. R., & Luck, S. J. (1996). Are attentional dwell times inconsistent with serial visual search? Psychonomic Bulletin & Review, 3, 360–365.
  • Morey, R. D. (2008). Confidence intervals from normalized data: A correction to cousineau (2005). Tutorials in Quantitative Methods for Psychology, 4, 61–64.
  • Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. Attention and Performance X: Control of Language Processes, 32, 531–556.
  • Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160–174.
  • Pratt, J., Sekuler, A. B., & McAuliffe, J. (2001). The role of attentional set on attentional cueing and inhibition of return. Visual Cognition, 8(1), 33–46.
  • Priess, H. W., Born, S., & Ansorge, U. (2012). Inhibition of return after color singletons. Journal of Eye Movement Research, 5(5), 1–12.
  • Pylyshyn, Z. (1994). Some primitive mechanisms of spatial attention. Cognition, 50(1–3), 363–384.
  • Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3(3), 179–197.
  • Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin, 86(3), 446–461.
  • Remington, R. W., Folk, C. L., & Mclean, J. P. (2001). Contingent attentional capture or delayed allocation of attention? Perception & Psychophysics, 63(2), 298–307.
  • Rouder, J. N., & Speckman, P. L. (2004). An evaluation of the Vincentizing method of forming group-level response time distributions. Psychonomic Bulletin & Review, 11(3), 419–427.
  • Shih, S. I., & Sperling, G. (2002). Measuring and modeling the trajectory of visual spatial attention. Psychological Review, 109(2), 260–305.
  • Sperling, G., & Weichselgartner, E. (1995). Episodic theory of the dynamics of spatial attention. Psychological Review, 102, 503–532.
  • Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. The Quarterly Journal of Experimental Psychology Section A, 40, 201–237.
  • Wolfe, J. M. (2007). Guided search 4.0: Current progress with a model of visual search. In W. Gray (Ed.), Integrated models of cognitive systems (pp. 99–119). New York: Oxford.
  • Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400, 867–869.
  • Wright, R. (1994). Shifts of visual attention to multiple simultaneous location cues. Canadian Hournal of Experimental Psychology, 48(2), 205–217.
  • Yashar, A., & Lamy, D. (2010). Intertrial repetition affects perception: The role of focused attention. Journal of Vision, 10(14), 3–3.
  • Zivony, A., Allon, A. S., Luria, R., & Lamy, D. (2018). Dissociating between the N2pc and attentional shifting: An attentional blink study. Neuropsychologia, 121, 153–163.
  • Zivony, A., & Lamy, D. (2018). Contingent attentional engagement: Stimulus-and goal-driven capture have qualitatively different consequences. Psychological Science, 29(12), 1930–1941.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.