354
Views
6
CrossRef citations to date
0
Altmetric
Forthcoming Special Issue on: Visual Search and Selective Attention

Learned feature variance is encoded in the target template and drives visual search

&
Pages 487-501 | Received 05 Apr 2019, Accepted 12 Jul 2019, Published online: 01 Aug 2019

References

  • Andersen, S. K., Hillyard, S. A., & Müller, M. M. (2008). Attention facilitates multiple stimulus features in parallel in human visual cortex. Current Biology, 18(13), 1006–1009. doi: 10.1016/j.cub.2008.06.030
  • Bae, G.-Y., Olkkonen, M., Allred, S. R., & Flombaum, J. I. (2015). Why some colors appear more memorable than others: A model combining categories and particulars in color working memory. Journal of Experimental Psychology: General, 144(14), 744–763.
  • Chelazzi, L., Duncan, J., Miller, E. K., & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80(6), 2918–2940. doi: 10.1152/jn.1998.80.6.2918
  • Chelazzi, L., Miller, E. K., Duncan, J., & Desimone, R. (1993). A neural basis for visual search in inferior temporal cortex. Nature, 363(6427), 345–347. Retrieved from http://www.nature.com.globalproxy.cvt.dk/nature/journal/v333/n6176/pdf/333816a0.pdf
  • Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017a). Learning features in a complex and changing environment: A distribution-based framework for visual attention and vision in general. Progress in Brain Research, 236, 97–120. doi: 10.1016/bs.pbr.2017.07.001
  • Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017b). Representing color ensembles. Psychological Science, 28(10), 1510–1517. doi: 10.1177/0956797617713787
  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193–222. doi: 10.1146/annurev-psych-122414-033400
  • Duncan, J. (1989). Boundary conditions on parallel processing in human vision. Perception, 18, 457–469.
  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458. doi: 10.3758/BF03211797
  • Foerster, R. M., & Schneider, W. X. (2018). Involuntary top-down control by search-irrelevant features: Visual working memory biases attention in an object-based manner. Cognition, 172, 37–45. doi: 10.1016/j.cognition.2017.12.002
  • Found, A., & Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: Investigating a “dimension-weighting” account. Perception and Psychophysics, 58(1), 88–101. doi: 10.3758/BF03205479
  • Geng, J. J., & Witkowski, P. (2019). Template-to-distractor distinctiveness regulates visual search efficiency. Current Opinion in Psychology, 29, 119–125. doi: 10.1016/j.copsyc.2019.01.003
  • Giesbrecht, B., Woldorff, M. G., Song, A. W., & Mangun, G. R. (2003). Neural mechanisms of top-down control during spatial and feature attention. NeuroImage, 19(3), 496–512. doi: 10.1016/S1053-8119(03)00162-9
  • Gramann, K., Toellner, T., Krummenacher, J., Eimer, M., & Müller, H. J. (2007). Brain electrical correlates of dimensional weighting: An ERP study. Psychophysiology, 44(2), 277–292. doi: 10.1111/j.1469-8986.2007.00496.x
  • Hollingworth, A., & Hwang, S. (2013). The relationship between visual working memory and attention: Retention of precise colour information in the absence of effects on perceptual selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 1628. doi: 10.1098/rstb.2013.0061
  • Hout, M. C., & Goldinger, S. D. (2015). Target templates: The precision of mental representations affects attentional guidance and decision-making in visual search. Attention, Perception, and Psychophysics, 77(1), 128–149. doi: 10.3758/s13414-014-0764-6
  • Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23(1), 315–341.
  • Kerzel, D., & Witzel, C. (2019). The allocation of resources in visual working memory and multiple attentional templates. Journal of Experimental Psychology: Human Perception and Performance, 45(5), 645–658. doi: 10.1037/xhp0000637
  • Liu, T., Larsson, J., & Carrasco, M. (2007). Feature-based attention modulates orientation-selective responses in human visual cortex. Neuron, 55(2), 313–323. doi: 10.1016/j.neuron.2007.06.030
  • Lo, S., & Andrews, S. (2015). To transform or not to transform: Using generalized linear mixed models to analyse reaction time data. Frontiers in Psychology, 6, 1171–1187. doi: 10.3389/fpsyg.2015.01171
  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.
  • Malcolm, G. L., & Henderson, J. M. (2009). The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision, 9(11), 8. doi: 10.1167/9.11.8
  • Malcolm, G. L., & Henderson, J. M. (2010). Combining top-down processes to guide eye movements during real-world scene search. Journal of Vision, 10(2), 1–11. doi: 10.1167/10.2.4
  • Moore, T., & Fallah, M. (2001). Control of eye movements and spatial attention. Proceedings of the National Academy of Sciences, 98(3), 1273–1276. doi: 10.1073/PNAS.98.3.1273
  • Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception & Psychophysics, 57(1), 1–17. doi: 10.3758/BF03211845
  • Müller, H. J., & Krummenacher, J. (2006). Locus of dimension weighting: Preattentive or postselective? Visual Cognition, 14(4–8), 490–513. doi: 10.1080/13506280500194154
  • Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effects in dimensional weighting. Journal of Experimental Psychology: Human Perception and Performance, 29(5), 1021–1035. doi: 10.1037/0096-1523.29.5.1021
  • Nako, R., Wu, R., Smith, T. J., & Eimer, M. (2014). Item and category-based attentional control during search for real-world objects: Can you find the pants among the pans? Journal of Experimental Psychology: Human Perception and Preformance, 40(4), 1283–1288.
  • Niklaus, M., Nobre, A. C., & Van Ede, F. (2017). Feature-based attentional weighting and spreading in visual working memory. Scientific Reports, 7. doi: 10.1038/srep42384
  • Olivers, C. N. L., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1243–1265. doi: 10.1037/0096-1523.32.5.1243
  • Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15(7), 327–334. doi: 10.1016/j.tics.2011.05.004
  • Peirce, J. W. (2007). PsychoPy-psychophysics software in Python. Journal of Neuroscience Methods, 162(1–2), 8–13. doi: 10.1016/j.jneumeth.2006.11.017
  • Pollmann, S., Weidner, R., Müller, H. J., & von Cramon, D. Y. (2006). Neural correlates of visual dimension weighting. Visual Cognition, 14(4–8), 877–897. doi: 10.1080/13506280500196142
  • Rajsic, J., Ouslis, N. E., Wilson, D. E., & Pratt, J. (2017). Looking sharp: Becoming a search template boosts precision and stability in visual working memory. Attention, Perception, and Psychophysics, 79(6), 1643–1651. doi: 10.3758/s13414-017-1342-5
  • Rajsic, J., & Woodman, G. F. (2019). Do we remember templates better so that we can reject distractors better? Attention, Perception, and Psychophysics. doi: 10.3758/s13414-019-01721-8
  • Reeder, R. R., Hanke, M., & Pollmann, S. (2017). Task relevance modulates the cortical representation of feature conjunctions in the target template. Scientific Reports, 7, 1. doi: 10.1038/s41598-017-04123-8
  • Reeder, R. R., & Peelen, M. V. (2013). The contents of the search template for category-level search in natural scenes. Journal of Vision, 13(3), 13–13. doi: 10.1167/13.3.13
  • Ruff, C. C., Blankenburg, F., Bjoertomt, O., Bestmann, S., Freeman, E., Haynes, J. D., … Driver, J. (2006). Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Current Biology, 16(15), 1479–1488. doi: 10.1016/j.cub.2006.06.057
  • Schmidt, J., & Zelinsky, G. J. (2009). Search guidance is proportional to the categorical specificity of a target cue. Quarterly Journal of Experimental Psychology, 62(10), 1904–1914. doi: 10.1080/17470210902853530
  • Serences, J. T., Saproo, S., Scolari, M., Ho, T., & Muftuler, L. T. (2009). Estimating the influence of attention on population codes in human visual cortex using voxel-based tuning functions. NeuroImage, 44(1), 223–231. doi: 10.1016/j.neuroimage.2008.07.043
  • Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403–409. doi: 10.1016/j.tics.2009.06.003
  • Töllner, T., Zehetleitner, M., Gramann, K., & Müller, H. J. (2010). Top-down weighting of visual dimensions: Behavioral and electrophysiological evidence. Vision Research, 50(14), 1372–1381. doi: 10.1016/j.visres.2009.11.009
  • Treue, S., & Trujillo, J. C. M. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399(6736), 575–579. doi: 10.1038/21176
  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92–114. doi: 10.1037/0096-1523.27.1.92
  • Wei, P., Yu, H., Müller, H. J., Pollmann, S., & Zhou, X. (2019). Differential brain mechanisms for processing distracting information in task-relevant and -irrelevant dimensions in visual search. Human Brain Mapping, 40(1), 110–124. doi: 10.1002/hbm.24358
  • Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 419–433. doi: 10.1037/0096-1523.15.3.419
  • Wolfe, J. M., Friedman-Hill, S. R., Stewart, M. I., & O’Connell, K. M. (1992). The role of categorization in visual search for orientation. Journal of Experimental Psychology: Human Perception and Performance, 18(1), 34–49. doi: 10.1037/0096-1523.18.1.34
  • Yang, H., & Zelinsky, G. J. (2009). Visual search is guided to categorically-defined targets. Vision Research, 49(16), 2095–2103. doi: 10.1016/j.visres.2009.05.017
  • Zhang, W., & Luck, S. J. (2009). Feature-based attention modulates feedforward visual processing. Nature Neuroscience, 12(1), 24–25. doi: 10.1038/nn.2223

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.