397
Views
0
CrossRef citations to date
0
Altmetric
Forthcoming Special Issue on: Visual Search and Selective Attention

Selective influence and sequential operations: A research strategy for visual search

, &
Pages 387-415 | Received 25 Apr 2019, Accepted 17 Aug 2019, Published online: 16 Sep 2019

References

  • Adeli, H., Vitu, F., & Zelinsky, G. J. (2017). A model of the superior colliculus predicts fixation locations during scene viewing and visual search. Journal of Neuroscience, 37(6), 1453–1467.
  • Adeli, H., & Zelinsky, G. (2018). Deep-BCN: Deep networks meet biased competition to create a brain-inspired model of attention control. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRw), Salt Lake City, Utah (pp. 1932–1942).
  • Arai, K., McPeek, R. M., & Keller, E. L. (2004). Properties of saccadic responses in monkey when multiple competing visual stimuli are present. Journal of Neurophysiology, 91(2), 890–900.
  • Arcizet, F., & Krauzlis, R. J. (2018). Covert spatial selection in primate basal ganglia. PLoS Biology, 16(10), e2005930.
  • Ashby, F. G., & Townsend, J. T. (1980). Decomposing the reaction time distribution: Pure insertion and selective influence revisited. Journal of Mathematical Psychology, 21, 93–123.
  • Azzato, M. C., & Butter, C. M. (1984). Visual search in cynomolgus monkeys: Stimulus parameters affecting two stages of visual search. Perception & Psychophysics, 36(2), 169–176.
  • Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception and Psychophysics, 55(5), 485–496.
  • Balan, P. F., Oristaglio, J., Schneider, D. M., & Gottlieb, J. (2008). Neuronal correlates of the set-size effect in monkey lateral intraparietal area. PLoS Biology, 6(7), e158.
  • Basso, M. A., & Wurtz, R. H. (2002). Neuronal activity in substantia nigra pars reticulata during target selection. Journal of Neuroscience, 22(5), 1883–1894.
  • Bichot, N. P., Chenchal, R. S., & Schall, J. D. (2001). Continuous processing in macaque frontal cortex during visual search. Neuropsychologia, 39(9), 972–982.
  • Bichot, N. P., Heard, M. T., DeGennaro, E. M., & Desimone, R. (2015). A source for feature-based attention in the prefrontal cortex. Neuron, 88, 832–844.
  • Bichot, N. P., Rossi, A. F., & Desimone, R. (2005). Parallel and serial neural mechanisms for visual search in macaque area V4. Science, 308(5721), 529–534.
  • Bichot, N. P., & Schall, J. D. (1999). Saccade target selection in macaque during feature and conjunction visual search. Visual Neuroscience, 16(1), 81–89.
  • Bichot, N. P., & Schall, J. D. (2002). Priming in macaque frontal cortex during popout visual search: Feature-based facilitation and location-based inhibition of return. Journal of Neuroscience, 22(11), 4675–4685.
  • Bichot, N. P., Thompson, K. G., Chenchal, R. S., & Schall, J. D. (2001). Reliability of macaque frontal eye field neurons signaling saccade targets during visual search. Journal of Neuroscience, 21(2), 713–725.
  • Blake, R., & Logothetis, N. (2002). Visual competition. Nature Reviews Neuroscience, 3(1), 13–21.
  • Boring, E. G. (1942). Sensation and perception in the history of experimental psychology. New York, NY: D Appleton Century Company.
  • Boucher, L., Palmeri, T. J., Logan, G. D., & Schall, J. D. (2007). Inhibitory control in mind and brain: An interactive race model of countermanding saccades. Psychological Review, 114, 376–397.
  • Brindley, G. S. (1970). Physiology of retina and visual pathways (2nd ed.). Baltimore, MD: Williams & Wilkins.
  • Broadbent, D. E. (1971). Decision and Stress. London: Academic Press.
  • Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: Linear ballistic accumulation. Cognitive Psychology, 57, 153–178.
  • Bruce, C. J., & Goldberg, M. E. (1985). Primate frontal eye fields. I. Single neurons discharging before saccades. Journal of Neurophysiology, 53(3), 603–635.
  • Bruce, N., Wloka, C., Frosst, N., Rahman, S., & Tsotsos, J. K. (2015). On computational modeling of visual saliency: Examining what’s right, and what’s left. Vision Research, 116, 95–112.
  • Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523–547.
  • Bundesen, C., Habekost, T., & Kyllingsbæk, S. (2011). A neural theory of visual attention and short-term memory (NTVA). Neuropsychologia, 49(6), 1446–1457.
  • Buracas, G. T., & Albright, T. D. (1999). Covert visual search: A comparison of performance by humans and macaques (Macaca mulatta). Behavioral Neuroscience, 113(3), 451–464.
  • Buracas, G. T., & Albright, T. D. (2009). Modulation of neuronal responses during covert search for visual feature conjunctions. Proceedings of the National Academy of Sciences of the United States of America, 106(39), 16853–16858.
  • Camalier, C. R., Gotler, A., Murthy, A., Thompson, K. G., Logan, G. D., Palmeri, T. J., & Schall, J. D. (2007). Dynamics of saccade target selection: Race model analysis of double step and search step saccade production in human and macaque. Vision Research, 47(16), 2187–2211.
  • Carpenter, R. H., & Williams, M. L. (1995). Neural computation of log likelihood in control of saccadic eye movements. Nature, 377, 59–62.
  • Cave, K. R. (1999). The FeatureGate model of visual selection. Psychological Research, 62, 182–194.
  • Cerkevich, C. M., Lyon, D. C., Balaram, P., & Kaas, J. H. (2014). Distribution of cortical neurons projecting to the superior colliculus in macaque monkeys. Eye and Brain, 2014, 121–137.
  • Chelazzi, L., Duncan, J., Miller, E. K., & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80(6), 2918–2940.
  • Chelazzi, L., Miller, E. K., Duncan, J., & Desimone, R. (1993). A neural basis for visual search in inferior temporal cortex. Nature, 363(6427), 345–347.
  • Chelazzi, L., Miller, E. K., Duncan, J., & Desimone, R. (2001). Responses of neurons in macaque area V4 during memory-guided visual search. Cerebral Cortex, 11(8), 761–772.
  • Cohen, J. Y., Heitz, R. P., Woodman, G. F., & Schall, J. D. (2009). Neural basis of the set-size effect in frontal eye field: Timing of attention during visual search. Journal of Neurophysiology, 101(4), 1699–1704.
  • Cohen, J. Y., Pouget, P., Woodman, G. F., Subraveti, C. R., Schall, J. D., & Rossi, A. F. (2007). Difficulty of visual search modulates neuronal interactions and response variability in the frontal eye field. Journal of Neurophysiology, 98(5), 2580–2587.
  • Constantinidis, C., & Steinmetz, M. A. (2001). Neuronal responses in area 7a to multiple-stimulus displays: I. Neurons encode the location of the salient stimulus. Cerebral Cortex, 11(7), 581–591.
  • Cosman, J. D., Lowe, K. A., Zinke, W., Woodman, G. F., & Schall, J. D. (2018). Prefrontal control of visual distraction. Current Biology, 28(3), 414–420. e3.
  • Costello, M. G., Zhu, D., May, P. J., Salinas, E., & Stanford, T. R. (2016). Task dependence of decision- and choice-related activity in monkey oculomotor thalamus. Journal of Neurophysiology, 115(1), 581–601.
  • Costello, M. G., Zhu, D., Salinas, E., & Stanford, T. R. (2013). Perceptual modulation of motor–but not visual–responses in the frontal eye field during an urgent-decision task. Journal of Neuroscience, 33, 16394–16408.
  • Davidson, D. (1970). Mental events. ( Reprinted. 2001). In Essays on actions and events (pp 207–227). Oxford: Clarendon Press.
  • Donders, F. C. (1868). Over de snelheid van psychische processen. Onderzoekingen gedaan in het Physiologisch Laboratorium der Utrechtsche Hoogeschool, 1868-1869, Tweede reeks, II, 92–120.
  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458.
  • Fecteau, J. H., & Munoz, D. P. (2003). Exploring the consequences of the previous trial. Nature Reviews Neuroscience, 4(6), 435–443.
  • Fifić, M., Nosofsky, R. M., & Townsend, J. T. (2008). Information-processing architectures in multidimensional classification: A validation test of the systems factorial technology. Journal of Experimental Psychology Human Perception and Performance, 34, 356–375.
  • Fifić, M., Townsend, J. T., & Eidels, A. (2008). Studying visual search using systems factorial methodology with target-distractor similarity as the factor. Perception & Psychophysics, 70, 583–603.
  • Findlay, J. M. (1997). Saccade target selection during visual search. Vision Research, 37(5), 617–631.
  • Fries, W. (1984). Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase. Journal of Comparative Neurology, 230, 55–76.
  • Gee, A. L., Ipata, A. E., & Goldberg, M. E. (2010). Activity in V4 reflects the direction, but not the latency, of saccades during visual search. Journal of Neurophysiology, 104(4), 2187–2193.
  • Hallett, P. E., & Adams, B. D. (1980). The predictability of saccadic latency in a novel voluntary oculomotor task. Vision Research, 20(4), 329–339.
  • Hallett, P. E., & Lightstone, A. D. (1976). Saccadic eye movements towards stimuli triggered by prior saccades. Vision Research, 16(1), 99–106.
  • Hanes, D. P., Patterson, W. F., & Schall, J. D. (1998). Role of frontal eye field in countermanding saccades: Visual, movement and fixation activity. Journal of Neurophysiology, 79, 817–834.
  • Hanes, D. P., & Schall, J. D. (1995). Countermanding saccades in macaque. Visual Neuroscience, 12, 929–937.
  • Harding, B., Goulet, M.-A., Jolin, S., Tremblay, C., Villeneuve, S.-P., & Durand, G. (2016). Systems factorial technology explained to humans. Tutorials in Quantitative Methods for Psychology, 12(1), 39–56.
  • Hasegawa, R. P., Matsumoto, M., & Mikami, A. (2000). Search target selection in monkey prefrontal cortex. Journal of Neurophysiology, 84(3), 1692–1696.
  • Heinzle, J., Hepp, K., & Martin, K. A. (2007). A microcircuit model of the frontal eye fields. Journal of Neuroscience, 27(35), 9341–9353.
  • Heitz, R. P., Cohen, J. Y., Woodman, G. F., & Schall, J. D. (2010). Neural correlates of correct and errant attentional selection revealed through N2pc and frontal eye field activity. Journal of Neurophysiology, 104(5), 2433–2441.
  • Heitz, R. P., & Schall, J. D. (2012). Neural mechanisms of speed-accuracy tradeoff. Neuron, 76, 616–628.
  • Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21(4), 760–775.
  • Hikosaka, O., & Wurtz, R. H. (1983). Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. Journal of Neurophysiology, 49(5), 1268–1284.
  • Hoffman, J. E. (1978). Search through a sequentially presented visual display. Perception & Psychophysics, 23(1), 1–11.
  • Hopf, J. M., Luck, S. J., Girelli, M., Hagner, T., Mangun, G. R., Scheich, H., & Heinze, H. J. (2000). Neural sources of focused attention in visual search. Cerebral Cortex, 10(12), 1233–1241.
  • Houpt, J. W., Blaha, L. M., McIntire, J. P., Havig, P. R., & Townsend, J. T. (2014). Systems factorial technology with R. Behavior Research Methods, 46(2), 307–330.
  • Houpt, J. W., & Townsend, J. T. (2010). The statistical properties of the survivor interaction contrast. Journal of Mathematical Psychology, 54, 446–453.
  • Huxley, A. F., & Stämpfli, R. (1949). Evidence for saltatory conduction in peripheral myelinated nerve fibres. Journal of Physiology, 108, 315–339.
  • Iba, M., & Sawaguchi, T. (2003). Involvement of the dorsolateral prefrontal cortex of monkeys in visuospatial target selection. Journal of Neurophysiology, 89(1), 587–599.
  • Ipata, A. E., Gee, A. L., & Goldberg, M. E. (2012). Feature attention evokes task-specific pattern selectivity in V4 neurons. Proceedings of the National Academy of Sciences of the United States of America, 109(42), 16778–16785.
  • Ipata, A. E., Gee, A. L., Goldberg, M. E., & Bisley, J. W. (2006). Activity in the lateral intraparietal area predicts the goal and latency of saccades in a free-viewing visual search task. Journal of Neuroscience, 26(14), 3656–3661.
  • Ipata, A. E., Gee, A. L., Gottlieb, J., Bisley, J. W., & Goldberg, M. E. (2006). LIP responses to a popout stimulus are reduced if it is overtly ignored. Nature Neuroscience, 9(8), 1071–1076.
  • Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40(10-12), 1489–1506.
  • Juan, C. H., Shorter-Jacobi, S. M., & Schall, J. D. (2004). Dissociation of spatial attention and saccade preparation. Proceedings of the National Academy of Sciences of the United States of America, 101(43), 15541–15544.
  • Katnani, H. A., & Gandhi, N. J. (2013). Time course of motor preparation during visual search with flexible stimulus-response association. Journal of Neuroscience, 33, 10057–10065.
  • Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Science, 4(4), 138–147.
  • Lee, B. T., & McPeek, R. M. (2013). The effects of distractors and spatial precues on covert visual search in macaque. Vision Research, 76, 43–49.
  • Liesefeld, H. R. (2018). Estimating the timing of cognitive operations with meg/eeg latency measures: A primer, a brief tutorial, and an implementation of various methods. Frontiers in Neuroscience, 12, 765.
  • Liesefeld, H. R., Liesefeld, A. M., Töllner, T., & Müller, H. J. (2017). Attentional capture in visual search: Capture and post-capture dynamics revealed by EEG. Neuroimage, 156, 166–173.
  • Liesefeld, H. R., & Müller, H. J. (2019). A theoretical attempt to revive the serial/parallel-search dichotomy. Attention, Perception & Psychophysics. doi: 10.3758/s13414-019-01819-z
  • Logan, G. D. (1996). The CODE theory of visual attention: An integration of space-based and object-based attention. Psychological Review, 103(4), 603–649.
  • Logan, G. D. (2002). An instance theory of attention and memory. Psychological Review, 109(2), 376–400.
  • Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91, 295–327.
  • Logan, G. D., Yamaguchi, M., Schall, J. D., & Palmeri, T. J. (2015). Inhibitory control in mind and brain 2.0: Blocked-input models of saccadic countermanding. Psychological Review, 122, 115–147.
  • Logothetis, N. K., & Schall, J. D. (1989). Neuronal correlates of subjective visual perception. Science, 245(4919), 761–763.
  • Lovejoy, L. P., & Krauzlis, R. J. (2017). Changes in perceptual sensitivity related to spatial cues depends on subcortical activity. Proceedings of the National Academy of Sciences of the United States of America, 114, 6122–6126.
  • Lowe, K. A., & Schall, J. D. (2018). Functional categories of visuomotor neurons in macaque frontal eye field. eNeuro, 5(5). pii: ENEURO.0131-18.2018.
  • Luck, S. J., & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291–308.
  • Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22(6), 657–672.
  • Mallet, N., Schmidt, R., Leventhal, D., Chen, F., Amer, N., Boraud, T., & Berke, J. D. (2016). Arkypallidal cells send a stop signal to striatum. Neuron, 89(2), 308–316.
  • Markov, N. T., Ercsey-Ravasz, M. M., Ribeiro Gomes, A. R., Lamy, C., Magrou, L., Vezoli, J., … Kennedy, H. (2014). A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cerebral Cortex, 24(1), 17–36.
  • Mazer, J. A., & Gallant, J. L. (2003). Goal-related activity in V4 during free viewing visual search. Evidence for a ventral stream visual salience map. Neuron, 40(6), 1241–1250.
  • McCants, C. W., Berggren, N., & Eimer, M. (2018). The guidance of visual search by shape features and shape configurations. Journal of Experimental Psychology Human Perception and Performance, 44(7), 1072–1085.
  • McClelland, J. L. (1979). On the time relations of mental processes: An examination of systems of processes in cascade. Psychological Review, 86(4), 287–330.
  • McComas, A. (2011). Galvani's spark: The story of the nerve impulse. New York: Oxford University Press.
  • McPeek, R. M., & Keller, E. L. (2001). Short-term priming, concurrent processing, and saccade curvature during a target selection task in the monkey. Vision Research, 41(6), 785–800.
  • McPeek, R. M., & Keller, E. L. (2002). Saccade target selection in the superior colliculus during a visual search task. Journal of Neurophysiology, 88(4), 2019–2034.
  • Meyers, E. M., Liang, A., Katsuki, F., & Constantinidis, C. (2017). Differential processing of Isolated object and Multi-item Pop-Out displays in LIP and PFC. Cerebral Cortex, 11, 1–13.
  • Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14, 247–279.
  • Miller, J. (1988). Discrete and continuous models of human information processing: Theoretical distinctions and empirical results. Acta Psychologica, 67(3), 191–257.
  • Miller, E. K., & Buschman, T. J. (2013). Cortical circuits for the control of attention. Current Opinion in Neurobiology, 23, 216–222.
  • Mirpour, K., Arcizet, F., Ong, W. S., & Bisley, J. W. (2009). Been there, seen that: A neural mechanism for performing efficient visual search. Journal of Neurophysiology, 102(6), 3481–3491.
  • Mirpour, K., & Bisley, J. W. (2013). Evidence for differential top-down and bottom-up suppression in posterior parietal cortex. Philosophical Transactions of the Royal Society of London B Biological Sciences, 368(1628), 20130069.
  • Mirpour, K., Bolandnazar, Z., & Bisley, J. W. (2018). Suppression of frontal eye field neuronal responses with maintained fixation. Proceedings of the National Academy of Sciences of the United States of America, 115(4), 804–809.
  • Mirpour, K., Ong, W. S., & Bisley, J. W. (2010). Microstimulation of posterior parietal cortex biases the selection of eye movement goals during search. Journal of Neurophysiology, 104(6), 3021–3028.
  • Monosov, I. E., Sheinberg, D. L., & Thompson, K. G. (2010). Paired neuron recordings in the prefrontal and inferotemporal cortices reveal that spatial selection precedes object identification during visual search. Proceedings of the National Academy of Sciences of the United States of America, 107, 13105–13110.
  • Monosov, I. E., & Thompson, K. G. (2009). Frontal eye field activity enhances object identification during covert visual search. Journal of Neurophysiology, 102(6), 3656–3672.
  • Monosov, I. E., Trageser, J. C., & Thompson, K. G. (2008). Measurements of simultaneously recorded spiking activity and local field potentials suggest that spatial selection emerges in the frontal eye field. Neuron, 57(4), 614–625.
  • Moran, R., Zehetleitner, M., Liesefeld, H. R., Müller, H. J., & Usher, M. (2016). Serial vs. parallel models of attention in visual search: Accounting for benchmark RT-distributions. Psychonomic Bulletin & Review, 23(5), 1300–1315.
  • Motter, B. C. (1994). Neural correlates of attentive selection for color or luminance in extrastriate area V4. Journal of Neuroscience, 14(4), 2178–2189.
  • Motter, B. C., & Belky, E. J. (1998). The guidance of eye movements during active visual search. Vision Research, 38(12), 1805–1815.
  • Motter, B. C., & Holsapple, J. W. (2000). Cortical image density determines the probability of target discovery during active search. Vision Research, 40(10–12), 1311–1322.
  • Motter, B. C., & Holsapple, J. W. (2007). Saccades and covert shifts of attention during active visual search: Spatial distributions, memory, and items per fixation. Vision Research, 47(10), 1261–1281.
  • Mouret, I., & Hasbroucq, T. (2000). The chronometry of single neuron activity: Testing discrete and continuous models of information processing. Journal of Experimental Pyschology: Human Perception and Performance, 26(5), 1622–1638.
  • Mruczek, R. E., & Sheinberg, D. L. (2007a). Activity of inferior temporal cortical neurons predicts recognition choice behavior and recognition time during visual search. Journal of Neuroscience, 27(11), 2825–2836.
  • Mruczek, R. E., & Sheinberg, D. L. (2007b). Context familiarity enhances target processing by inferior temporal cortex neurons. Journal of Neuroscience, 27(32), 8533–8545.
  • Mruczek, R. E., & Sheinberg, D. L. (2012). Stimulus selectivity and response latency in putative inhibitory and excitatory neurons of the primate inferior temporal cortex. Journal of Neurophsiology, 108(10):2725–2736.
  • Murray, J. D., Jaramillo, J., & Wang, X. J. (2017). Working memory and decision-making in a frontoparietal circuit model. Journal of Neuroscience, 37(50), 12167–12186.
  • Murthy, A., Ray, S., Shorter, S. M., Pridy, E. G., Schall, J. D., & Thompson, K. G. (2007). Frontal eye field contributions to rapid corrective saccades. Journal of Neurophysiology, 97(2), 1457–1469.
  • Murthy, A., Ray, S., Shorter, S. M., Schall, J. D., & Thompson, K. G. (2009). Neural control of visual search by frontal eye field: Effects of unexpected target displacement on visual selection and saccade preparation. Journal of Neurophysiology, 101(5), 2485–2506.
  • Nakata, R., Eifuku, S., & Tamura, R. (2014). Effects of tilted orientations and face-like configurations on visual search asymmetry in macaques. Animal Cognition, 17(1), 67–76.
  • Nelson, M. J., Murthy, A., & Schall, J. D. (2016). Neural control of visual search by frontal eye field: Chronometry of neural events and race model processes. Journal of Neurophysiology, 115(4), 1954–1969.
  • Ninomiya, T., Sawamura, H., Inoue, K., & Takada, M. (2012). Segregated pathways carrying frontally derived top-down signals to visual areas MT and V4 in macaques. Journal of Neuroscience, 32(20), 6851–6858.
  • Nishida, S., Tanaka, T., & Ogawa, T. (2013). Separate evaluation of target facilitation and distractor suppression in the activity of macaque lateral intraparietal neurons during visual search. Journal of Neurophysiology, 110(12), 2773–2791.
  • Nishida, S., Tanaka, T., & Ogawa, T. (2014). Transition of target-location signaling in activity of macaque lateral intraparietal neurons during delayed-response visual search. Journal of Neurophysiology, 112(6), 516–527.
  • Nothdurft, H. C., Pigarev, I. N., & Kastner, S. (2009). Overt and covert visual search in primates: Reaction times and gaze shift strategies. Journal of Integrative Neuroscience, 8(2), 137–174.
  • Ogawa, T., & Komatsu, H. (2006). Neuronal dynamics of bottom-up and top-down processes in area V4 of macaque monkeys performing a visual search. Experimental Brain Research, 173(1), 1–13.
  • Ogawa, T., & Komatsu, H. (2009). Condition-dependent and condition-independent target selection in the macaque posterior parietal cortex. Journal of Neurophysiology, 101(2), 721–736.
  • Osman, A., Bashore, T. R., Coles, M. G. H., Donchin, E., & Meyer, D. E. (1992). On the transmission of partial information: Inferences from movement-related brain potentials. Journal of Experimental Psychology: Human Perception and Performance, 18(1), 217–232.
  • Paré, M., & Hanes, D. P. (2003). Controlled movement processing: Superior colliculus activity associated with countermanded saccades. Journal of Neuroscience, 23, 6480–6489.
  • Phillips, A. N., & Segraves, M. A. (2010). Predictive activity in macaque frontal eye field neurons during natural scene searching. Journal of Neurophysiology, 103(3), 1238–1252.
  • Posner, M. I., & Cohen, Y. (1984). Components of visual Orienting. In H. Bouma, & D. Bowhuis (Eds.), Attention and performance X (pp. 531–556). Hillsdale, NJ: Erlbaum.
  • Pouget, P., Stepniewska, I., Crowder, E. A., Leslie, M. W., Emeric, E. E., Nelson, M. J., & Schall, J. D. (2009). Visual and motor connectivity and the distribution of calcium-binding proteins in macaque frontal eye field: Implications for saccade target selection. Frontiers in Neuroanatomy, 3, 2.
  • Purcell, B. A., Heitz, R. P., Cohen, J. Y., & Schall, J. D. (2012). Response variability of frontal eye field neurons modulates with sensory input and saccade preparation but not visual search salience. Journal of Neurophysiology, 108, 2737–2750.
  • Purcell, B. A., Heitz, R. P., Cohen, J. Y., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2010). Neurally constrained modeling of perceptual decision making. Psychological Review, 117(4), 1113–1143.
  • Purcell, B. A., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2012). From salience to saccades: Multiple-alternative gated stochastic accumulator model of visual search. Journal of Neuroscience, 32(10), 3433–3446.
  • Purcell, B. A., Schall, J. D., & Woodman, G. F. (2013). On the origin of event-related potentials indexing covert attentional selection during visual search: Timing of selection by macaque frontal eye field and event-related potentials during pop-out search. Journal of Neurophysiology, 109(2), 557–569.
  • Purcell, B. A., Weigand, P. K., & Schall, J. D. (2012). Supplementary eye field during visual search: Salience, cognitive control, and performance monitoring. Journal of Neuroscience, 32(30), 10273–10285.
  • Ramkumar, P., Lawlor, P. N., Glaser, J. I., Wood, D. K., Phillips, A. N., Segraves, M. A., & Kording, K. P. (2016). Feature-based attention and spatial selection in frontal eye fields during natural scene search. Journal of Neurophysiology, 116, 1328–1343.
  • Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20(4), 260–281.
  • Reinhart, R. M., Heitz, R. P., Purcell, B. A., Weigand, P. K., Schall, J. D., & Woodman, G. F. (2012). Homologous mechanisms of visuospatial working memory maintenance in macaque and human: Properties and sources. Journal of Neuroscience, 32(22), 7711–7722.
  • Reppert, T. R., Servant, M., Heitz, R. P., & Schall, J. D. (2018). Neural mechanisms of speed-accuracy tradeoff of visual search: Saccade vigor, the origin of targeting errors, and comparison of the superior colliculus and frontal eye field. Journal of Neurophysiology, 120(1), 372–384.
  • Sapountzis, P., Paneri, S., & Gregoriou, G. G. (2018). Distinct roles of prefrontal and parietal areas in the encoding of attentional priority. Proceedings of the National Academy of Sciences of the United States of America, 115(37), E8755–E8764.
  • Sato, T., Murthy, A., Thompson, K. G., & Schall, J. D. (2001). Search efficiency but not response interference affects visual selection in frontal eye field. Neuron, 30(2), 583–591.
  • Sato, T. R., & Schall, J. D. (2003). Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron, 38(4), 637–648.
  • Sato, T. R., Watanabe, K., Thompson, K. G., & Schall, J. D. (2003). Effect of target-distractor similarity on FEF visual selection in the absence of the target. Experimental Brain Research, 151, 356–363.
  • Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception & Psychophysics, 72(6), 1455–1470.
  • Schall, J. D. (2001). Neural basis of deciding, choosing and acting. Nature Reviews Neuroscience, 2, 33–42.
  • Schall, J. D. (2004). On the role of frontal eye field in guiding attention and saccades. Vision Research, 44(12), 1453–1467.
  • Schall, J. D., & Hanes, D. P. (1993). Neural basis of saccade target selection in frontal eye field during visual search. Nature, 366(6454), 467–469.
  • Schall, J. D., Hanes, D. P., Thompson, K. G., & King, D. J. (1995). Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation. Journal of Neuroscience, 15(10), 6905–6918.
  • Schall, J. D., Morel, A., & Kaas, J. (1993). Topography of supplementary eye field afferents to frontal eye field in macaque: Implications for mapping between saccade coordinate systems. Visual Neuroscience, 10, 385–393.
  • Schall, J. D., Morel, A., King, D., & Bullier, J. (1995). Topography of visual cortex connections with frontal eye field in macaque: Convergence and segregation of processing streams. The Journal of Neuroscience, 15, 4464–4487.
  • Schall, J. D., Sato, T. R., Thompson, K. G., Vaughn, A. A., & Juan, C. H. (2004). Effects of search efficiency on surround suppression during visual selection in frontal eye field. Journal of Neurophysiology, 91(6), 2765–2769.
  • Schweickert, R. (1978). A critical path generalization of the additive factor method: Analysis of a Stroop task. Journal of Mathematical Psychology, 18(2), 105–139.
  • Schwemmer, M. A., Feng, S. F., Holmes, P. J., Gottlieb, J., & Cohen, J. D. (2015). A multi-area stochastic model for a covert visual search task. PLoS One, 10(8), e0136097.
  • Servant, M., White, C., Montagnini, A., & Burle, B. (2015). Using covert response activation to test latent assumptions of formal decision-making models in humans. Journal of Neuroscience, 35(28), 10371–10385.
  • Shadlen, M. N., & Kiani, R. (2013). Decision making as a window on cognition. Neuron, 80(3), 791–806.
  • Shen, K., & Paré, M. (2006). Guidance of eye movements during visual conjunction search: Local and global contextual effects on target discriminability. Journal of Neurophysiology, 95(5), 2845–2855.
  • Shen, K., & Paré, M. (2007). Neuronal activity in superior colliculus signals both stimulus identity and saccade goals during visual conjunction search. Journal of Vision, 7(5), 15.1–15.13.
  • Shen, K., & Paré, M. (2014). Predictive saccade target selection in superior colliculus during visual search. Journal of Neuroscience, 34, 5640–5648.
  • Smulders, F. T., Kok, A., Kenemans, J. L., & Bashore, T. R. (1995). The temporal selectivity of additive factor effects on the reaction process revealed in ERP component latencies. Acta Psychologia (Amsterdam), 90(1–3), 97–109.
  • Song, J. H., & McPeek, R. M. (2015). Neural correlates of target selection for reaching movements in superior colliculus. Journal of Neurophysiology, 113, 1414–1422.
  • Song, J. H., Takahashi, N., & McPeek, R. M. (2008). Target selection for visually guided reaching in macaque. Journal of Neurophysiology, 99(1), 14–24.
  • Steenrod, S. C., Phillips, M. H., & Goldberg, M. E. (2013). The lateral intraparietal area codes the location of saccade targets and not the dimension of the saccades that will be made to acquire them. Journal of Neurophysiology, 109, 2596–2605.
  • Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, Amsterdam, 30, 276–315.
  • Sternberg, S. (2001). Separate modifiability, mental modules, and the use of pure and composite measures to reveal them. Acta Psychologica, 106(1–2), 147–246.
  • Tanaka, T., Nishida, S., & Ogawa, T. (2015). Different target-discrimination times can be followed by the same saccade-initiation timing in different stimulus conditions during visual searches. Journal of Neurophysiology, 114, 366–380.
  • Taylor, D. A. (1976). Stage analysis of reaction time. Psychological Bulletin, 83(2), 161–191.
  • Teller, D. Y. (1984). Linking propositions. Vision Research, 24(10), 1233–1246.
  • Teller, D. Y., & Pugh, E. N., Jr. (1983). Linking propositions in color vision. In J. D. Mollon & L. T. Sharpe (Eds.), Colour vision: Physiology and psychophysics (pp. 577–589). London: Academic Press.
  • Theeuwes, J. (1994). Stimulus-driven capture and attentional set: Selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 799–806.
  • Thomas, N. W., & Paré, M. (2007). Temporal processing of saccade targets in parietal cortex area LIP during visual search. Journal of Neurophysiology, 97(1), 942–947.
  • Thompson, K. G., Bichot, N. P., & Sato, T. R. (2005). Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience. Journal of Neurophysiology, 93(1), 337–351.
  • Thompson, K. G., Bichot, N. P., & Schall, J. D. (1997). Dissociation of visual discrimination from saccade programming in macaque frontal eye field. Journal of Neurophysiology, 77(2), 1046–1050.
  • Thompson, K. G., Biscoe, K. L., & Sato, T. R. (2005). Neuronal basis of covert spatial attention in the frontal eye field. Journal of Neuroscience, 25(41), 9479–9487.
  • Thompson, K. G., Hanes, D. P., Bichot, N. P., & Schall, J. D. (1996). Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. Journal of Neurophysiology, 76(6), 4040–4055.
  • Thornton, T. L., & Gilden, D. L. (2007). Parallel and serial processes in visual search. Psychological Review, 114(1), 71–103.
  • Torbaghan, S. S., Yazdi, D., Mirpour, K., & Bisley, J. W. (2012). Inhibition of return in a visual foraging task in non-human subjects. Vision Research, 74, 2–9.
  • Townsend, J. T. (1972). Some results concerning the identifiability of parallel and serial processes. British Journal of Mathematical and Statistical Psychology, 25, 168–199.
  • Townsend, J. T. (1984). Uncovering mental processes with factorial experiments. Journal of Mathematical Psychology, 28, 363–400.
  • Townsend, J. T. (1990). Serial versus parallel processing: Sometimes they look like Tweedledum and Tweedledee but they can (and should) be distinguished. Psychological Science, 1, 46–54.
  • Townsend, J. T., & Ashby, F. G. (1983). The stochastic modeling of elementary psychological processes. Cambridge: Cambridge University Press.
  • Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal properties of elementary perception: An investigation of parallel, serial and coactive theories. Journal of Mathematical Psychology, 39, 321–360.
  • Townsend, J. T., & Wenger, M. J. (2004). A theory of interactive parallel processing: New capacity measures and predictions for a response time inequality series. Psychological Review, 111(4), 1003–1035.
  • Trageser, J. C., Monosov, I. E., Zhou, Y., & Thompson, K. G. (2008). A perceptual representation in the frontal eye field during covert visual search that is more reliable than the behavioral report. European Journal of Neuroscience, 28(12), 2542–2549.
  • Treisman, A. M. (1988). Features and objects: The fourteenth Bartlett Memorial Lecture. Quarterly Journal of Experimental Psychology, 40A, 201–236.
  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.
  • Warton, D. I., & Hui, F. K. C. (2011). The arcsine is asinine: The analysis of proportions in ecology. Ecology, 92, 3–10.
  • White, B. J., Boehnke, S. E., Marino, R. A., Itti, L., & Munoz, D. P. (2009). Color-related signals in the primate superior colliculus. Journal of Neuroscience, 29(39), 12159–12166.
  • White, B. J., Kan, J. Y., Levy, R., Itti, L., & Munoz, D. P. (2017). Superior colliculus encodes visual saliency before the primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 114, 9451–9456.
  • Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238.
  • Wolfe, J. M. (2007). Guided search 4.0: Current progress with a model of visual search. In W. Gray (Ed.), Integrated models of cognitive systems (pp. 99–119). New York, NY: Oxford.
  • Wolfe, J. M., Cain, M., Ehinger, K., & Drew, T. (2015). Guided search 5.0: Meeting the challenge of hybrid search and multiple-target foraging. Journal of Vision, 15(12), 1106.
  • Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology Human Perception and Performance, 15(3), 419–433.
  • Woodman, G. F., Kang, M.-S., Rossi, A. F., & Schall, J. D. (2007). Nonhuman primate event-related potentials indexing covert shifts of attention. Proceedings of the National Academy of Sciences, 104(38), 15111–15116.
  • Woodman, G. F., Kang, M. S., Thompson, K., & Schall, J. D. (2008). The effect of visual search efficiency on response preparation: Neurophysiological evidence for discrete flow. Psychological Science, 19(2), 128–136.
  • Woodman, G. F., Luck, S. J., & Schall, J. D. (2007). The role of working memory representations in the control of attention. Cerebral Cortex, 17(Suppl 1), i118–i124.
  • Woodworth, R. S. (1938). Experimental Psychology. New York, NY: Henry Holt and Company.
  • Woodworth, R. S., & Schlosberg, H. (1954). Experimental Psychology. New York, NY: Holt, Rinehart and Winston.
  • Yang, H., Fifić, M., & Townsend, J. T. (2014). Survivor interaction contrast wiggle predictions of parallel and serial models for an arbitrary number of processes. Journal of Mathematical Psychology, 58, 21–32.
  • Zhou, H., & Desimone, R. (2011). Feature-based attention in the frontal eye field and area V4 during visual search. Neuron, 70(6), 1205–1217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.