169
Views
2
CrossRef citations to date
0
Altmetric
Forthcoming Special Issue on: Visual Search and Selective Attention

Animacy and object size are reflected in perceptual similarity computations by the preschool years

, , &
Pages 435-451 | Received 07 Mar 2019, Accepted 13 Aug 2019, Published online: 10 Oct 2019

References

  • Almeida, J., Mahon, B. Z., Zapater-Raberov, V., Dziuba, A., Cabaço, T., Marques, J. F., & Caramazza, A. (2014). Grasping with the eyes: The role of elongation in visual recognition of manipulable objects. Cognitive, Affective, & Behavioral Neuroscience, 14(1), 319–335. doi: 10.3758/s13415-013-0208-0
  • Banno, H., & Saiki, J. (2015). The use of higher-order statistics in rapid object categorization in natural scenes. Journal of Vision, 15(2), 1–20.
  • Bardi, L., Regolin, L., & Simion, F. (2011). Biological motion preference in humans at birth: Role of dynamic and configural properties. Developmental Science, 14(2), 353–359. doi: 10.1111/j.1467-7687.2010.00985.x
  • Bates, D. (2005). Fitting linear mixed models in R. R News, 5(1), 27–30.
  • Bova, S. M., Fazzi, E., Giovenzana, A., Montomoli, C., Signorini, S. G., Zoppello, M., & Lanzi, G. (2007). The development of visual object recognition in school-age children. Developmental Neuropsychology, 31(1), 79–102.
  • Bulf, H., Johnson, S. P., & Valenza, E. (2011). Visual statistical learning in the newborn infant. Cognition, 121(1), 127–132. doi: 10.1016/j.cognition.2011.06.010
  • Chao, L. L., Martin, A., & Haxby, J. V. (1999). Are face-responsive regions selective only for faces? Neuroreport, 10(14), 2945–2950. doi: 10.1097/00001756-199909290-00013
  • Cohen, M. A., Alvarez, G. A., Nakayama, K., & Konkle, T. (2017). Visual search for object categories is predicted by the representational architecture of high-level visual cortex. Journal of Neurophysiology, 117(1), 388–402. doi: 10.1152/jn.00569.2016
  • Deen, B., Richardson, H., Dilks, D. D., Takahashi, A., Keil, B., Wald, L. L., … Saxe, R. (2017). Organization of high-level visual cortex in human infants. Nature Communications, 8, 13995. doi: 10.1038/ncomms13995
  • Dekker, T., Mareschal, D., Sereno, M. I., & Johnson, M. H. (2011). Dorsal and ventral stream activation and object recognition performance in school-age children. NeuroImage, 57(3), 659–670.
  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433. doi: 10.1037/0033-295X.96.3.433
  • Ebeling, K. S., & Gelman, S. A. (1988). Coordination of size standards by young children. Child Development, 888–896. doi: 10.2307/1130256
  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. doi: 10.3758/BF03193146
  • Freeman, J., & Simoncelli, E. P. (2011). Metamers of the ventral stream. Nature Neuroscience, 14(9), 1195–1201. doi: 10.1038/nn.2889
  • Gelman, S. A., & Ebeling, K. S. (1989). Children's use of nonegocentric standards in judgments of functional size. Child Development, 920–932. doi: 10.2307/1131033
  • Gerhardstein, P., & Rovee-Collier, C. (2002). The development of visual search in infants and very young children. Journal of Experimental Child Psychology, 81(2), 194–215.
  • Gomez, J., Natu, V., Jeska, B., Barnett, M., & Grill-Spector, K. (2018). Development differentially sculpts receptive fields across early and high-level human visual cortex. Nature Communications, 9(1), 788.
  • Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2009). Digital image processing using MATLAB (Vol. 2). Tennessee: Gatesmark Publishing.
  • Grill-Spector, K., & Kanwisher, N. (2005). Visual recognition As soon as You know It Is there, You know what It Is. Psychological Science, 16(2), 152–160. doi: 10.1111/j.0956-7976.2005.00796.x
  • Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36(5), 791–804.
  • Julian, J. B., Ryan, J., & Epstein, R. A. (2016). Coding of object size and object category in human visual cortex. Cerebral Cortex, 27(6), 3095–3109. doi: 10.1093/cercor/bhw150
  • Jüttner, M., Wakui, E., Petters, D., & Davidoff, J. (2016). Developmental commonalities between object and face recognition in Adolescence. Frontiers in Psychology, 7, 385.
  • Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83(2), B35–B42. doi: 10.1016/S0010-0277(02)00004-5
  • Konkle, T., & Caramazza, A. (2013). Tripartite organization of the ventral stream by animacy and object size. Journal of Neuroscience, 33(25), 10235–10242. doi: 10.1523/JNEUROSCI.0983-13.2013
  • Konkle, T., & Oliva, A. (2012a). A familiar-size Stroop effect: Real-world size is an automatic property of object representation. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 561–569. doi: 10.1037/a0028294
  • Konkle, T., & Oliva, A. (2012b). A real-world size organization of object responses in Occipitotemporal cortex. Neuron, 74(6), 1114–1124. doi: 10.1016/j.neuron.2012.04.036
  • Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). Lmertest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. doi: 10.18637/jss.v082.i13
  • Lee, S. A., & Spelke, E. S. (2010). Two systems of spatial representation underlying navigation. Experimental Brain Research, 206(2), 179–188. doi: 10.1007/s00221-010-2349-5
  • Levin, D. T., Takarae, Y., Miner, A. G., & Keil, F. (2001). Efficient visual search by category: Specifying the features that mark the difference between artifacts and animals in preattentive vision. Perception & Psychophysics, 63(4), 676–697.
  • Long, B., & Konkle, T. (2017). A familiar-size Stroop effect in the absence of basic-level recognition. Cognition, 168, 234–242. doi: 10.1016/j.cognition.2017.06.025
  • Long, B., Konkle, T., Cohen, M. A., & Alvarez, G. A. (2016). Mid-level perceptual features distinguish objects of different real-world sizes. Journal of Experimental Psychology: General, 45(1), 95–105. doi: 10.1037/xge0000130
  • Long, B., Moher, M., Carey, S., & Konkle, T. (2019). Real-world size is automatically encoded in preschoolers’ object representations. JEP:HPP.
  • Long, B., Störmer, V. S., & Alvarez, G. A. (2017). Mid-level perceptual features contain early cues to animacy. Journal of Vision, 17(6), 20. doi: 10.1167/17.6.20
  • Long, B., Yu, C. P., & Konkle, T. (2018). Mid-level visual features underlie the high-level categorical organization of the ventral stream. Proceedings of the National Academy of Sciences, 115(38), E9015–E9024.
  • Luo, Y., Kaufman, L., & Baillargeon, R. (2009). Young infants’ reasoning about physical events involving inert and self-propelled objects. Cognitive Psychology, 58(4), 441–486. doi: 10.1016/j.cogpsych.2008.11.001
  • Lupyan, G., & Spivey, M. J. (2010). Redundant spoken labels facilitate perception of multiple items. Attention, Perception, & Psychophysics, 72(8), 2236–2253.
  • Mash, C. (2006). Multidimensional shape similarity in the development of visual object classification. Journal of Experimental Child Psychology, 95(2), 128–152.
  • Muentener, P., & Carey, S. (2010). Infants’ causal representations of state change events. Cognitive Psychology, 61(2), 63–86. doi: 10.1016/j.cogpsych.2010.02.001
  • Naber, M., Hilger, M., & Einhäuser, W. (2012). Animal detection and identification in natural scenes: Image statistics and emotional valence. Journal of Vision, 12(1), 25–25. doi: 10.1167/12.1.25
  • Nishimura, M., Scherf, S., & Behrmann, M. (2009). Development of object recognition in humans. Biology Reports, 1, 56. doi:10.3410/B1-56
  • Pailian, H., Libertus, M. E., Feigenson, L., & Halberda, J. (2016). Visual working memory capacity increases between ages 3 and 8 years, controlling for gains in attention, perception, and executive control. Attention, Perception, & Psychophysics, 78(6), 1556–1573.
  • Palmer, S., Rosch, E., & Chase, P. (1981). Canonical perspective and the perception of objects. In J. Long & A. Baddeley (Eds.), International symposium on attention and performance (Attention and performance IX) (pp. 135–151). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Rosenholtz, R., Huang, J., & Ehinger, K. A. (2012). Rethinking the role of top-down attention in vision: Effects attributable to a lossy representation in peripheral vision. Frontiers in Psychology, 3. doi: 10.3389/fpsyg.2012.00013
  • Saxe, R., Tenenbaum, J. B., & Carey, S. (2005). Secret agents: Inferences about hidden causes by 10-and 12-month-old infants. Psychological Science, 16(12), 995–1001. doi: 10.1111/j.1467-9280.2005.01649.x
  • Schlottmann, A., & Ray, E. (2010). Goal attribution to schematic animals: Do 6-month-olds perceive biological motion as animate? Developmental Science, 13(1), 1–10. doi: 10.1111/j.1467-7687.2009.00854.x
  • Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences, 105(2), 809–813.
  • Slater, A., Mattock, A., & Brown, E. (1990). Size constancy at birth: Newborn infants’ responses to retinal and real size. Journal of Experimental Child Psychology, 49(2), 314–322. doi: 10.1016/0022-0965(90)90061-C
  • Telling, A. L., Kumar, S., Meyer, A. S., & Humphreys, G. W. (2010). Electrophysiological evidence of semantic interference in visual search. Journal of Cognitive Neuroscience, 22(10), 2212–2225. doi: 10.1162/jocn.2009.21348
  • Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520–522. doi: 10.1038/381520a0
  • Vales, C., & Smith, L. B. (2015). Words, shape, visual search and visual working memory in 3-year-old children. Developmental Science, 18(1), 65–79.
  • Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010). Controlling low-level image properties: The SHINE toolbox. Behavior Research Methods, 42(3), 671–684. doi: 10.3758/BRM.42.3.671
  • Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238. doi: 10.3758/BF03200774
  • Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1(3), 0058.
  • Wolfe, J. M., Yee, S., & Friedman-Hill, A. R. (1992). Curvature is a basic feature for visual search tasks. Perception, 21(4), 465–480.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.