214
Views
3
CrossRef citations to date
0
Altmetric
Forthcoming Special Issue on: Visual Search and Selective Attention

Contextual cueing in older adults: Slow initial learning but flexible use of distractor configurations

, , , & ORCID Icon
Pages 563-575 | Received 01 Mar 2019, Accepted 09 Sep 2019, Published online: 26 Sep 2019

References

  • Annac, E., Conci, M., Müller, H. J., & Geyer, T. (2017). Local item density modulates adaptation of learned contextual cues. Visual Cognition, 25(1–3), 262–277.
  • Barnes, K. A., Howard, J. H. J., Howard, D. V., Kenealy, L., & Vaidya, C. J. (2010). Two forms of implicit learning in childhood ADHD. Developmental Neuropsychology, 35(5), 494–505. doi: 10.1080/87565641.2010.494750
  • Beesley, T., Vadillo, M. A., Pearson, D., & Shanks, D. R. (2015). Pre-exposure of repeated search configurations facilitates subsequent contextual cuing of visual search. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(2), 348–362. doi: 10.1037/xlm0000033
  • Beesley, T., Vadillo, M. A., Pearson, D., & Shanks, D. R. (2016). Configural learning in contextual cuing of visual search. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1173–1185. doi: 10.1037/xhp0000185
  • Bowles, R. P., & Salthouse, T. A. (2003). Assessing the age-related effects of proactive interference on working memory tasks using the Rasch model. Psychology and Aging, 18(3), 608–615. doi: 10.1037/0882-7974.18.3.608
  • Brady, T. F., & Chun, M. M. (2007). Spatial constraints on learning in visual search: Modeling contextual cuing. Journal of Experimental Psychology: Human Perception and Performance, 33(4), 798–815. doi: 10.1037/0096-1523.33.4.798
  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.
  • Burke, S. N., Gaynor, L. S., Barnes, C. A., Bauer, R. M., Bizon, J. L., Roberson, E. D., & Ryan, L. (2018). Shared functions of perirhinal and parahippocampal cortices: Implications for cognitive aging. Trends in Neurosciences, 41(6), 349–359. doi: 10.1016/j.tins.2018.03.001
  • Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. doi: 10.1006/cogp.1998.0681
  • Chun, M. M., & Phelps, E. A. (1999). Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neuroscience, 2(9), 844–847. doi: 10.1038/12222
  • Colagiuri, B., & Livesey, E. J. (2016). Contextual cuing as a form of nonconscious learning: Theoretical and empirical analysis in large and very large samples. Psychonomic Bulletin & Review, 23(6), 1996–2009. doi: 10.3758/s13423-016-1063-0
  • Conci, M., Sun, L., & Müller, H. J. (2011). Contextual remapping in visual search after predictable target-location changes. Psychological Research, 75(4), 279–289. doi: 10.1007/s00426-010-0306-3
  • Dulas, M. R., & Duarte, A. (2016). Age-related changes in overcoming proactive interference in associative memory: The role of PFC-mediated executive control processes at retrieval. NeuroImage, 132, 116–128. doi: 10.1016/j.neuroimage.2016.02.017
  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.
  • Folstein, M. F., Folstein, S. E., White, T., & Messer, M. A. (2010). Mini-mental state examination (2nd ed.). (Mini-Mental-Status-Test: 2. Ausgabe).
  • Geringswald, F., Herbik, A., Hoffmann, M. B., & Pollmann, S. (2013). Contextual cueing impairment in patients with age-related macular degeneration. Journal of Vision, 13(3), doi: 10.1167/13.3.28
  • Giesbrecht, B., Sy, J. L., & Guerin, S. A. (2013). Both memory and attention systems contribute to visual search for targets cued by implicitly learned context. Vision Research, 85, 80–89. doi: 10.1016/j.visres.2012.10.006
  • Goujon, A., Didierjean, A., & Thorpe, S. (2015). Investigating implicit statistical learning mechanisms through contextual cueing. Trends in Cognitive Sciences, 19(9), 524–533. doi: 10.1016/j.tics.2015.07.009
  • Greene, A. J., Gross, W. L., Elsinger, C. L., & Rao, S. M. (2007). Hippocampal differentiation without recognition: An fMRI analysis of the contextual cueing task. Learning & Memory, 14(8), 548–553. doi: 10.1101/lm.609807
  • Hautzinger, M., Keller, F., & Kühner, C. (2006). Beck depressions-inventar (BDI-II). Frankfurt: Harcourt Test Services.
  • Henke, K. (2010). A model for memory systems based on processing modes rather than consciousness. Nature Reviews Neuroscience, 11(7), 523–532. doi: 10.1038/nrn2850
  • Howard, J. H. J., & Howard, D. V. (2013). Aging mind and brain: Is implicit learning spared in healthy aging? Frontiers in Psychology, 4, 817. doi: 10.3389/fpsyg.2013.00817
  • Howard, J. H. J., Howard, D. V., Dennis, N. A., Yankovich, H., & Vaidya, C. J. (2004). Implicit spatial contextual learning in healthy aging. Neuropsychology, 18(1), 124–134. doi: 10.1037/0894-4105.18.1.124
  • Jacoby, L. L., Wahlheim, C. N., Rhodes, M. G., Daniels, K. A., & Rogers, C. S. (2010). Learning to diminish the effects of proactive interference: Reducing false memory for young and older adults. Memory & Cognition, 38(6), 820–829. doi: 10.3758/MC.38.6.820
  • Jiang, Y. V., & Sisk, C. A. (2019). Contextual cueing. In S. Pollmann (Ed.), Springer Neuromethods: Spatial learning and attentional guidance. New York: Humana Press.
  • Jiang, Y. V., Swallow, K. M., Rosenbaum, G. M., & Herzig, C. (2013). Rapid acquisition but slow extinction of an attentional bias in space. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 87–99. doi: 10.1037/a0027611
  • Jungé, J. A., Scholl, B. J., & Chun, M. M. (2007). How is spatial context learning integrated over signal versus noise? A primacy effect in contextual cueing. Visual Cognition, 15(1), 1–11. doi: 10.1080/13506280600859706
  • Kasper, R. W., Grafton, S. T., Eckstein, M. P., & Giesbrecht, B. (2015). Multimodal neuroimaging evidence linking memory and attention systems during visual search cued by context. Annals of the New York Academy of Sciences, 1339, 176–189. doi: 10.1111/nyas.12640
  • Keppel, G., & Underwood, B. J. (1962). Proactive inhibition in short-term retention of single items. Journal of Verbal Learning and Verbal Behavior, 1(3), 153–161.
  • Kunar, M. A., Flusberg, S., Horowitz, T. S., & Wolfe, J. M. (2007). Does contextual cuing guide the deployment of attention? Journal of Experimental Psychology: Human Perception and Performance, 33(4), 816–828. doi: 10.1037/0096-1523.33.4.816
  • Kunar, M. A., John, R., & Sweetman, H. (2014). A configural dominant account of contextual cueing: Configural cues are stronger than colour cues. Quarterly Journal of Experimental Psychology, 67(7), 1366–1382. doi: 10.1080/17470218.2013.863373
  • Kunar, M. A., & Wolfe, J. M. (2011). Target absent trials in configural contextual cuing. Attention, Perception & Psychophysics, 73(7), 2077–2091. doi: 10.3758/s13414-011-0164-0
  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. doi: 10.3389/fpsyg.2013.00863
  • La Voie, D., & Light, L. L. (1994). Adult age differences in repetition priming: A meta-analysis. Psychology and Aging, 9(4), 539–553.
  • Lester, A. W., Moffat, S. D., Wiener, J. M., Barnes, C. A., & Wolbers, T. (2017). The aging Navigational System. Neuron, 95(5), 1019–1035. doi: 10.1016/j.neuron.2017.06.037
  • Lustig, C., & Hasher, L. (2001). Implicit memory is not immune to interference. Psychological Bulletin, 127(5), 618–628.
  • Lustig, C., & Hasher, L. (2002). Working memory span: The effect of prior learning. The American Journal of Psychology, 115(1), 89–101.
  • Lustig, C., May, C. P., & Hasher, L. (2001). Working memory span and the role of proactive interference. Journal of Experimental Psychology: General, 130(2), 199–207.
  • Lyon, J., Scialfa, C., Cordazzo, S., & Bubric, K. (2014). Contextual cuing: The effects of stimulus variation, intentionality, and aging. Canadian Journal of Experimental Psychology, 68(2), 111–121. doi: 10.1037/cep0000007
  • Makovski, T., & Jiang, Y. V. (2010). Contextual cost: When a visual-search target is not where it should be. Quarterly Journal of Experimental Psychology, 63(2), 216–225. doi: 10.1080/17470210903281590
  • Manelis, A., & Reder, L. M. (2012). Procedural learning and associative memory mechanisms contribute to contextual cueing: Evidence from fMRI and eye-tracking. Learning & Memory, 19(11), 527–534. doi: 10.1101/lm.025973.112
  • Manginelli, A. A., & Pollmann, S. (2009). Misleading contextual cues: How do they affect visual search? Psychological Research, 73(2), 212–221. doi: 10.1007/s00426-008-0211-1
  • Manns, J. R., & Squire, L. R. (2001). Perceptual learning, awareness, and the hippocampus. Hippocampus, 11(6), 776–782. doi: 10.1002/hipo.1093
  • Merhav, M., Riemer, M., & Wolbers, T. (2019). Spatial updating deficits in human aging are associated with traces of former memory representations. Neurobiology of Aging, 76, 53–61. doi: 10.1016/j.neurobiolaging.2018.12.010
  • Moscovitch, M., Cabeza, R., Winocur, G., & Nadel, L. (2016). Episodic memory and beyond: The hippocampus and neocortex in transformation. Annual Review of Psychology, 67, 105–134. doi: 10.1146/annurev-psych-113011-143733
  • Nagel, I. E., Preuschhof, C., Li, S.-C., Nyberg, L., Bäckman, L., Lindenberger, U., & Heekeren, H. R. (2009). Performance level modulates adult age differences in brain activation during spatial working memory. Proceedings of the National Academy of Sciences, 106(52), 22552–22557. doi: 10.1073/pnas.0908238106
  • Nagel, I. E., Preuschhof, C., Li, S.-C., Nyberg, L., Bäckman, L., Lindenberger, U., & Heekeren, H. R. (2011). Load modulation of BOLD response and connectivity predicts working memory performance in younger and older adults. Journal of Cognitive Neuroscience, 23(8), 2030–2045. doi: 10.1162/jocn.2010.21560
  • Negash, S., Kliot, D., Howard, D. V., Howard, J. H. J., Das, S. R., Yushkevich, P. A., … Wolk, D. A. (2015). Relationship of contextual cueing and hippocampal volume in amnestic mild cognitive impairment patients and cognitively normal older adults. Journal of the International Neuropsychological Society, 21(4), 285–296. doi: 10.1017/S1355617715000223
  • Negash, S., Petersen, L. E., Geda, Y. E., Knopman, D. S., Boeve, B. F., Smith, G. E., … Petersen, R. C. (2007). Effects of ApoE genotype and mild cognitive impairment on implicit learning. Neurobiology of Aging, 28(6), 885–893. doi: 10.1016/j.neurobiolaging.2006.04.004
  • Olson, I. R., Chun, M. M., & Allison, T. (2001). Contextual guidance of attention: Human intracranial event-related potential evidence for feedback modulation in anatomically early temporally late stages of visual processing. Brain, 124(Pt 7), 1417–1425.
  • Oudman, E., Van der Stigchel, S., Wester, A. J., Kessels, R. P. C., & Postma, A. (2011). Intact memory for implicit contextual information in Korsakoff’s amnesia. Neuropsychologia, 49(10), 2848–2855. doi: 10.1016/j.neuropsychologia.2011.06.010
  • Park, D. C., & Festini, S. B. (2017). Theories of memory and aging: A look at the past and a glimpse of the future. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 72(1), 82–90. doi: 10.1093/geronb/gbw066
  • Pollmann, S., & Manginelli, A. A. (2009). Anterior prefrontal involvement in implicit contextual change detection. Frontiers in Human Neuroscience, 3, 28. doi: 10.3389/neuro.09.028.2009
  • Preston, A. R., & Gabrieli, J. D. E. (2008). Dissociation between explicit memory and configural memory in the human medial temporal lobe. Cerebral Cortex, 18(9), 2192–2207. doi: 10.1093/cercor/bhm245
  • Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., … Acker, J. D. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15(11), 1676–1689. doi: 10.1093/cercor/bhi044
  • Rieckmann, A., & Bäckman, L. (2009). Implicit learning in aging: Extant patterns and new directions. Neuropsychology Review, 19(4), 490–503. doi: 10.1007/s11065-009-9117-y
  • Rowe, G., Hasher, L., & Turcotte, J. (2008). Age differences in visuospatial working memory. Psychology and Aging, 23(1), 79–84. doi: 10.1037/0882-7974.23.1.79
  • Rowe, G., Valderrama, S., Hasher, L., & Lenartowicz, A. (2006). Attentional disregulation: A benefit for implicit memory. Psychology and Aging, 21(4), 826–830. doi: 10.1037/0882-7974.21.4.826
  • Salthouse, T. A. (2019). Trajectories of normal cognitive aging. Psychology and Aging, 34(1), 17–24. doi: 10.1037/pag0000288
  • Samrani, G., Bäckman, L., & Persson, J. (2017). Age-differences in the temporal properties of proactive interference in working memory. Psychology and Aging, 32(8), 722–731. doi: 10.1037/pag0000204
  • Schankin, A., Hagemann, D., & Schubö, A. (2011). Is contextual cueing more than the guidance of visual-spatial attention? Biological Psychology, 87(1), 58–65. doi: 10.1016/j.biopsycho.2011.02.003
  • Sharifian, F., Contier, O., Preuschhof, C., & Pollmann, S. (2017). Reward modulation of contextual cueing: Repeated context overshadows repeated target location. Attention, Perception & Psychophysics, 79(7), 1871–1877. doi: 10.3758/s13414-017-1397-3
  • Shing, Y. L., Werkle-Bergner, M., Brehmer, Y., Muller, V., Li, S.-C., & Lindenberger, U. (2010). Episodic memory across the lifespan: The contributions of associative and strategic components. Neuroscience and Biobehavioral Reviews, 34(7), 1080–1091. doi: 10.1016/j.neubiorev.2009.11.002
  • Smyth, A. C., & Shanks, D. R. (2011). Aging and implicit learning: Explorations in contextual cuing. Psychology and Aging, 26(1), 127–132. doi: 10.1037/a0022014
  • Underwood, B. J. (1957). Interference and forgetting. Psychological Review, 64(1), 49–60.
  • Vadillo, M. A., Konstantinidis, E., & Shanks, D. R. (2016). Underpowered samples, false negatives, and unconscious learning. Psychonomic Bulletin & Review, 23(1), 87–102. doi: 10.3758/s13423-015-0892-6
  • van Asselen, M., Almeida, I., Andre, R., Januario, C., Goncalves, A. F., & Castelo-Branco, M. (2009). The role of the basal ganglia in implicit contextual learning: A study of Parkinson’s disease. Neuropsychologia, 47(5), 1269–1273. doi: 10.1016/j.neuropsychologia.2009.01.008
  • van Asselen, M., Almeida, I., Julio, F., Januario, C., Campos, E. B., Simoes, M., & Castelo-Branco, M. (2012). Implicit contextual learning in prodromal and early stage Huntington’s disease patients. Journal of the International Neuropsychological Society, 18(4), 689–696. doi: 10.1017/S1355617712000288
  • Ward, E. V., & Shanks, D. R. (2018). Implicit memory and cognitive aging. Retrieved from https://oxfordre.com/psychology/view/10.1093/acrefore/9780190236557.001.0001/acrefore-9780190236557-e-378
  • Weeks, J. C., & Hasher, L. (2018). Older adults encode more, not less: Evidence for age-related attentional broadening. Aging, Neuropsychology, and Cognition, 25(4), 576–587. doi: 10.1080/13825585.2017.1353678
  • Wilson, I. A., Gallagher, M., Eichenbaum, H., & Tanila, H. (2006). Neurocognitive aging: Prior memories hinder new hippocampal encoding. Trends in Neurosciences, 29(12), 662–670. doi: 10.1016/j.tins.2006.10.002
  • World Medical Association. (2001). World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bulletin of the World Health Organization, 79(4), 373.
  • Zellin, M., Conci, M., von Mühlenen, A., & Müller, H. J. (2011). Two (or three) is one too many: Testing the flexibility of contextual cueing with multiple target locations. Attention, Perception & Psychophysics, 73(7), 2065–2076. doi: 10.3758/s13414-011-0175-x
  • Zellin, M., Conci, M., von Mühlenen, A., & Müller, H. J. (2013). Here today, gone tomorrow – adaptation to change in memory-Guided visual search. PloS One, 8(3), e59466. doi:10.1371/journal.pone.0059466.
  • Zellin, M., von Mühlenen, A., Müller, H. J., & Conci, M. (2013). Statistical learning in the past modulates contextual cueing in the future. Journal of Vision, 13, 19. doi:10.1167/13.3.19.
  • Zellin, M., von Mühlenen, A., Müller, H. J., & Conci, M. (2014). Long-term adaptation to change in implicit contextual learning. Psychonomic Bulletin & Review, 21(4), 1073–1079. doi: 10.3758/s13423-013-0568-z
  • Zinchenko, A., Conci, M., Taylor, P. C. J., Müller, H. J., & Geyer, T. (2019). Taking attention out of context: Frontopolar transcranial magnetic stimulation abolishes the formation of new context memories in visual search. Journal of Cognitive Neuroscience, 31(3), 442–452. doi: 10.1162/jocn_a_01358

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.