337
Views
10
CrossRef citations to date
0
Altmetric
Forthcoming Special Issue on: Visual Search and Selective Attention

Target templates in singleton search vs. feature-based search modes

, &
Pages 502-517 | Received 02 Mar 2019, Accepted 27 Sep 2019, Published online: 14 Oct 2019

References

  • Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55, 485–496. doi: 10.3758/BF03205306
  • Becker, S. I. (2007). Irrelevant singletons in pop-out search: Attentional capture or filtering costs? Journal of Experimental Psychology: Human Perception and Performance, 33, 764–787. doi: 10.1037/0096-1523.33.4.764
  • Becker, S. I. (2008a). Can intertrial effects of features and dimensions be explained by a single theory? Journal of Experimental Psychology: Human Perception and Performance, 34, 1417–1440. doi: 10.1037/a0011386
  • Becker, S. I. (2008b). The mechanism of priming: Episodic retrieval or priming of pop-out? Acta Psychologica, 127, 324–339. doi: 10.1016/j.actpsy.2007.07.005
  • Becker, S. I. (2010a). Oculomotor capture by irrelevant colour singletons depends on intertrial priming. Vision Research, 50, 2116–2126. doi: 10.1016/j.visres.2010.08.001
  • Becker, S. I. (2010b). The role of target-distractor relationships in guiding attention and the eyes in visual search. Journal of Experimental Psychology: General, 139, 247–265. doi: 10.1037/a0018808
  • Becker, S. I., Ansorge, U., & Horstmann, G. (2009). Can intertrial priming account for the similarity effect in visual search? Vision Research, 49, 1738–1756. doi: 10.1016/j.visres.2009.04.001
  • Becker, S. I., Atalla, M., & Folk, C. L. (in press). Can we simultaneously bias attention to features and relations? Attention, Perception, & Psychophysics.
  • Becker, S. I., Folk, C. L., & Remington, R. W. (2010). The role of relational information in contingent capture. Journal of Experimental Psychology: Human Perception and Performance, 36, 1460–1476. doi: 10.1037/a0020370
  • Becker, S. I., Folk, C. L., & Remington, R. W. (2013). Attentional capture does not depend on feature similarity, but on target-nontarget relations. Psychological Science, 24, 634–647. doi: 10.1177/0956797612458528
  • Becker, S. I., Harris, A. M., Venini, D., & Retell, J. D. (2014). Visual search for colour and shape: When is the gaze guided by feature relationships, when by feature values? Journal of Experimental Psychology: Human Perception and Performance, 40(1), 264–291. doi: 10.1037/a0033489
  • Becker, S. I., Harris, A. M., York, A., & Choi, J. (2017). Conjunction search is relational: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 43, 1828–1842.
  • Becker, S. I., & Horstmann, G. (2009). A feature weighting account of priming in conjunction search. Attention, Perception, & Psychophysics, 71, 258–272. doi: 10.3758/APP.71.2.258
  • Chawla, D., Rees, G., & Friston, K. J. (1999). The physiological basis of attentional modulation in extrastriate visual areas. Nature Neuroscience, 2, 671–676. doi: 10.1038/10230
  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458. doi: 10.1037/0033-295X.96.3.433
  • Eimer, M., Kiss, M., Press, C., & Sauter, D. (2009). The roles of feature-specific task set and bottom-up salience in attentional capture: An ERP study. Journal of Experimental Psychology: Human Perception and Performance, 35, 1316–1328. doi: 10.1037/a0015872
  • Folk, C. L., & Anderson, B. A. (2010). Target uncertainty and attentional capture: Singleton set or multiple top-down control settings? Psychonomic Bulletin & Review, 17, 421–426. doi: 10.3758/PBR.17.3.421
  • Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24, 847–858. doi: 10.1037/0096-1523.24.3.847
  • Folk, C. L., & Remington, R. W. (2008). Bottom-up priming of top-down attentional control settings. Visual Cognition, 16, 215–231. doi: 10.1080/13506280701458804
  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044. doi: 10.1037/0096-1523.18.4.1030
  • Found, A., & Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: Investigating a “dimension-weighting” account. Perception & Psychophysics, 58, 88–101. doi: 10.3758/BF03205479
  • Geyer, T., & Müller, H. J. (2009). Distinct, but top-down modulable colour and positional priming mechanisms in visual search. Psychological Research, 73, 167–176. doi:10.1007/s00426-008-0207-x
  • Grubert, A., & Eimer, M. (2016). All set indeed! N2pc components reveal simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 42, 1215–1230. doi: 10.1037/xhp0000221
  • Harris, A. M., Becker, S. I., & Remington, R. W. (2015). Capture by colour: Evidence for dimension-specific singleton capture. Attention, Perception, & Psychophysics, 77, 2305–2321. doi: 10.3758/s13414-015-0927-0
  • Hebb, D. O. (1949). The organization of behaviour; A neuropsychological theory. Oxford, England: Wiley.
  • Hillstrom, A. P. (2000). Repetition effects in visual search. Perception & Psychophysics, 62, 600–817. doi: 10.3758/BF03206924
  • Huang, L., Holcombe, A., & Pashler, H. (2004). Repetition priming in visual search: Episodic retrieval, not feature priming. Memory & Cognition, 32, 12–20. doi: 10.3758/BF03195816
  • Huang, L., Treisman, A., & Pashler, H. (2007). Characterizing the limits of human awareness. Science, 10, 823–825. doi: 10.1126/science.1143515
  • Irons, J. L., Folk, C. L., & Remington, R. W. (2011). All set! Evidence of simultaneous attention control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 38, 758–775. doi: 10.1037/a0026578
  • Irons, J. L., & Leber, A. (2016). Choosing attentional control settings in a dynamically changing environment. Attention, Perception, & Psychophysics, 78, 2031–2048. doi: 10.3758/s13414-016-1125-4
  • Irons, J. L., & Leber, A. (2018). Characterizing individual variation in the strategic use of attentional control. Journal of Experimental Psychology: Human Perception & Performance, 44, 1637–1654. doi: 10.1037/xhp0000560
  • Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40, 1489–1506. doi: 10.1016/S0042-6989(99)00163-7
  • Kahneman, D., & Treisman, A. (1984). Changing views of attention and automaticity. In R. Parasuraman & D. R. Davies (Eds.), Varieties of attention (pp. 29–61). Orlando, FL: Academic Press.
  • Leonard, C. J., & Egeth, H. E. (2008). Attentional guidance in singleton search: An examination of top-down, bottom-up, and intertrial factors. Visual Cognition, 16, 1078–1091. doi: 10.1080/13506280701580698
  • Liesefeld, H. R., Liesefeld, A. M., Pollmann, S., & Müller, H. J. (2019). Biasing allocations of attention via selective weighting of saliency signals: Behavioral and neuroimaging evidence for the dimension-weighting account. In T. Hodgson (Ed.), Processes of visuo-spatial attention and working memory. Current topics in behavioral neurosciences. Advance online publication. Berlin/Heidelberg, Germany: Springer. doi: 10.1007/7854_2018_75
  • Liesefeld, H. R., & Müller, H. J. (2019). Distractor handling via dimension weighting. Current Opinion in Psychology, 29, 160–167. doi: 10.1016/j.copsyc.2019.03.003
  • Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subjects designs. Psychonomic Bulletin & Review, 1, 476–490. doi: 10.3758/BF03210951
  • Ludwig, C. J. H., & Gilchrist, I. D. (2002). Stimulus-driven and goal-driven control over visual selection. Journal of Experimental Psychology: Human Perception and Performance, 28, 902–912. doi: 10.1037/0096-1523.28.4.902
  • Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22, 657–672. doi:10.3758/BF03209251
  • Martin, A., & Becker, S. I. (2018). How feature relationships influence attention and awareness: Evidence from eye movements and EEG. Journal of Experimental Psychology: Human Perception and Performance, 44, 1865–1883. doi: 10.1037/xhp0000574
  • McPeek, R. M., Maljkovic, V., & Nakayama, K. (1999). Saccades require focal attention and are facilitated by a short-term memory system. Vision Research, 39, 1555–1566. doi: 10.1016/S0042-6989(98)00228-4
  • Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception & Psychophysics, 57, 1–17. doi:10.3758/BF03211845
  • Navalpakkam, V., & Itti, L. (2007). Search goals tunes visual features optimally. Neuron, 53, 605–617. doi: 10.1016/j.neuron.2007.01.018
  • Nothdurft, H. C. (2015). Luminance-defined salience - targets among distractors. VPL-Reports, 2, 1–97. www.vpl-reports.de/2/
  • Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51, 599–606. doi: 10.3758/BF03211656
  • Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97–136. doi:10.1016/0010-0285(80)90005-5
  • Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16, 459–478. doi: 10.1037/0096-1523.16.3.459
  • Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1, 202–238. doi: 10.3758/BF03200774
  • Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15, 419–433. doi: 10.1037/0096-1523.15.3.419
  • Wyble, B., Folk, C. L., & Potter, M. C. (2013). Contingent attentional capture by conceptually relevant images. Journal of Experimental Psychology: Human Perception and Performance, 39, 861–871. doi: 10.1037/a0030517
  • Zehetleitner, M., Goschy, H., & Müller, H. J. (2012). Top-down control of attention: It’s gradual, practice-dependent, and hierarchically organized. Journal of Experimental Psychology: Human Perception and Performance, 38, 941–957. doi:10.1037/a0027629.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.