726
Views
0
CrossRef citations to date
0
Altmetric
Articles

Impaired visuo-spatial statistical learning with mathematical learning difficulties

ORCID Icon, &
Pages 138-148 | Received 13 Jul 2022, Accepted 24 Apr 2023, Published online: 11 May 2023

References

  • Aisenberg, A., & Henik, A. (2010). Re-use or re-function? Behavioral and Brain Sciences, 33(4), 266–267. doi:10.1017/S0140525X10000981
  • Alvarez, G. A., & Oliva, A. (2008). The representation of simple ensemble visual features outside the focus of attention. Psychological Science, 19(4), 392–398. doi:10.1111/j.1467-9280.2008.02098.x
  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Publishing.
  • Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33(4), 245–313. doi:10.1017/S0140525X10000853
  • Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 12(2), 157–162. doi:10.1111/1467-9280.00327
  • Ashkenazi, S., & Henik, A. (2010). A disassociation between physical and mental number bisection in developmental dyscalculia. Neuropsychologia, 48(10), s2861–2868. doi:10.1016/j.neuropsychologia.2010.05.028
  • Baldwin, D., Andersson, A., Saffran, J., & Meyer, M. (2008). Segmenting dynamic human action via statistical structure. Cognition, 106(3), 1382–1407. doi:10.1016/j.cognition.2007.07.005
  • Bays, B. C., Turk-Browne, N. B., & Seitz, A. R. (2015). Dissociable behavioural outcomes of visual statistical learning. Visual Cognition, 23(9-10), 1072–1097. doi:10.1080/13506285.2016.1139647
  • Beard, E., Dienes, Z., Muirhead, C., & West, R. (2016). Using Bayes factors for testing hypotheses about intervention effectiveness in addictions research. Addiction, 111(12), 2230–2247. doi:10.1111/add.13501
  • Brady, T. F., Konkle, T., & Alvarez, G. A. (2009). Compression in visual working memory: Using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138(4), 487–502. doi:10.1037/a0016797
  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. doi:10.1163/156856897X00357
  • Bulthe, J., Prinsen, J., Vanderauwera, J., Duyck, S., Daniels, N., Gillebert, C.R., Mantini, D., Op de Beeck, H.P., & De Smedt, B. (2019). Multi-method brain imaging reveals impaired representations of number as well as altered connectivity in adults with dyscalculia. NeuroImage, 190, 289–302. doi:10.1016/j.neuroimage.2018.06.012
  • Butterworth, B. (1999). What counts: How every brain is hardwired for math. Free Press.
  • Butterworth, B. (2009). Developmental dyscalculia. In J. Reed, & J. Warner-Rogers (Eds.), Child neuropsychology: Concepts, theory, and practice (pp. 357–374). John Wiley & Sons.
  • Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332(6033), 1049–1053. doi:10.1126/science.1201536
  • Campbell, K. L., Zimerman, S., Lee, M. M. S., & Hasher, L. (2010). Age-related advantage in visual statistical learning. Poster presented at 51st Annual Meeting of the Psychonomic Society, St. Louis, MO.
  • Cantlon, J. F., Platt, M. L., & Brannon, E. M. (2009). Beyond the number domain. Trends in Cognitive Sciences, 13(2), 83–91. doi:10.1016/j.tics.2008.11.007
  • Chong, S. C., & Treisman, A. (2005). Statistical processing: Computing the average size in perceptual groups. Vision Research, 45(7), 891–900. doi:10.1016/j.visres.2004.10.004
  • Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. doi:10.1006/cogp.1998.0681
  • Cohen-Kadosh, R., Cohen Kadosh, K., Schumann, T., Kaas, A., Goebel, R., Henik, A., & Sack, A. T. (2007). Virtual dyscalculia after TMS to the right parietal lobe: A combined fMRI and neuronavigated TMS study. Current Biology, 17(8), 689–693. doi:10.1016/j.cub.2007.02.056
  • Conway, C. M., & Christiansen, M. H. (2006). Statistical learning within and between modalities: Pitting abstract against stimulus specific representations. Psychological Science, 17(10), 905–912. doi:10.1111/j.1467-9280.2006.01801.x
  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3-6), 487–506. doi:10.1080/02643290244000239
  • Emberson, L. L., Conway, C. M., & Christiansen, M. H. (2011). Timing is everything: Changes in presentation rate have opposite effects on auditory and visual implicit statistical learning. The Quarterly Journal of Experimental Psychology, 64(5), 1021–1040. doi:10.1080/17470218.2010.538972
  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. doi:10.3758/BF03193146
  • Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 12(6), 499–504. doi:10.1111/1467-9280.00392
  • Fiser, J., & Aslin, R. N. (2002). Statistical learning of higher-order temporal structure from visual shape sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 458–467. doi:10.1037/0278-7393.28.3.458
  • Fooks, N., Hadad, B. S., & Rubinsten, O. (2021). Nonsymbolic-magnitude deficit in adults with developmental dyscalculia: Evidence of impaired size discrimination but intact size constancy. Psychological Science, 32(8), 1271–1284. doi:10.1177/0956797621995204
  • Frost, R., Siegelman, N., Narkiss, A., & Afek, L. (2013). What predicts successful literacy acquisition in a second language? Psychological Science, 24(7), 1243–1252. doi:10.1177/0956797612472207
  • Gabay, Y., Thiessen, E. D., & Holt, L. L. (2015). Impaired statistical learning in developmental dyslexia. Journal of Speech, Language, and Hearing Research, 58(3), 934–945. doi:10.1044/2015_JSLHR-L-14-0324
  • Geary, D. C., Bailey, D. H., Littlefield, A., Wood, P., Hoard, M. K., & Nugent, L. (2009). First grade predictors of mathematical learning disability: A latent class trajectory analysis. Cognitive Development, 24(4), 411–429. doi:10.1016/j.cogdev.2009.10.001
  • Gilbert, C. D., Sigman, M., & Crist, R. E. (2001). The neural basis of perceptual learning. Neuron, 31(5), 681–697. doi:10.1016/S0896-6273(01)00424-X
  • Kave, G. (2006). : The development of naming and word fluency: Evidence from Hebrew-speaking children between ages 8 and 17. Developmental Neuropsychology, 29(3), 493–508. doi:10.1207/s15326942dn2903_7
  • Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83(2), B35–B42. doi:10.1016/S0010-0277(02)00004-5
  • MATAL. (2007). Diagnostic battery for the assessment of learning functions. The Council for Higher Education and the Center for Psychometric Tests.
  • Musz, E., Weber, M. J., & Thompson-Schill, S. L. (2015). Visual statistical learning is not reliably modulated by selective attention to isolated events. Attention, Perception, & Psychophysics, 77(1), 78–96. doi:10.3758/s13414-014-0757-5
  • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607–609. doi:10.1038/381607a0
  • Openhaim–Biton, S., & Breznitz, Z. (2004). 2minutes calculation test. Unpublished test. University of Haifa, Israel.
  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442. doi:10.1163/156856897X00366
  • Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555. doi:10.1016/j.neuron.2004.10.014
  • Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2), 293–305. doi:10.1016/j.neuron.2006.11.022
  • Price, G. R., & Ansari, D. (2013). Dyscalculia: Characteristics, causes, and treatments. Numeracy, 6(1), 1–16. doi:10.5038/1936-4660.6.1.2
  • Price, G. R., Holloway, I., Räsänen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17(24), 1042–1043. doi:10.1016/j.cub.2007.10.013
  • Raven, J. C. (1960). Guide to the standard progressive matrices. H.K. Lewis.
  • Rinaldi, L., & Girelli, L. (2017). Commentary: From ‘sense of number’ to ‘sense of magnitude’–The role of continuous magnitudes in numerical cognition. Frontiers in Psychology, 8, 652. doi:10.3389/fpsyg.2017.00652
  • Rotzer, S., Loenneker, T., Kucian, K., Martin, E., Klaver, P., & Von Aster, M. (2009). Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia, 47(13), 2859–2865. doi:10.1016/j.neuropsychologia.2009.06.009
  • Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356–374. doi:10.1016/j.jmp.2012.08.001
  • Rubinsten, O., & Henik, A. (2009). Developmental dyscalculia: Heterogeneity may not mean different mechanisms. Trends in Cognitive Science, 13(2), 92–99. doi:10.1016/j.tics.2008.11.002
  • Rubinsten, O., Korem, N., Perry, A., Goldberg, M., & Shamay-Tsoory, S. (2020). Different neural activations for an approaching friend versus stranger: Linking personal space to numerical cognition. Brain and Behavior, 10(6), 1–13. doi:10.1002/brb3.1613
  • Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926–1928. doi:10.1126/science.274.5294.1926
  • Shalev, R. S., Auerbach, J., Manor, O., & Gross-Tsur, V. (2000). Developmental dyscalculia: Prevalence and prognosis. European Child & Adolescent Psychiatry, 9(S2), S58–S64. doi:10.1007/s007870070009
  • Shalev, R. S., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: A prospective six-year follow-up. Developmental Medicine & Child Neurology, 47(2), 121–125. doi:10.1017/S0012162205000216
  • Shatil, E. (1997a). One-minute test for words. Unpublished test, University of Haifa, Haifa.
  • Shatil, E. (1997b). One-minute test for pseudo-words. Unpublished test, University of Haifa, Haifa.
  • Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237–250. doi:10.1111/1467-9280.02438
  • Skagerlund, K., & Träff, U. (2014). Development of magnitude processing in children with developmental dyscalculia: Space, time, and number. Frontiers in Psychology, 5, 675. doi:10.3389/fpsyg.2014.00675
  • Spencer, M., Kaschak, M. P., Jones, J. L., & Lonigan, C. J. (2015). Statistical learning is related to early literacy-related skills. Reading and Writing, 28(4), 467–490. doi:10.1007/s11145-014-9533-0
  • Szucs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2013). Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex, 49(10), 2674–2688. doi:10.1016/j.cortex.2013.06.007
  • Toro, J. M., & Trobalón, J. B. (2005). Statistical computations over a speech stream in a rodent. Perception & Psychophysics, 67(5), 867–875. doi:10.3758/BF03193539
  • Turk-Browne, N. B., Isola, P. J., Scholl, B. J., & Treat, T. A. (2008). Multidimensional visual statistical learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(2), 399–407. doi:10.1037/0278-7393.34.2.399
  • Turk-Browne, N. B., Jungé, J., & Scholl, B. J. (2005). The automaticity of visual statistical learning. Journal of Experimental Psychology: General, 134(4), 552–564. doi:10.1037/0096-3445.134.4.552
  • Turk-Browne, N. B., & Scholl, B. J. (2009). Flexible visual statistical learning: Transfer across space and time. Journal of Experimental Psychology: Human Perception and Performance, 35(1), 195–202. doi:10.1037/0096-1523.35.1.195
  • Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural evidence of statistical learning: Efficient detection of visual regularities without awareness. Journal of Cognitive Neuroscience, 21(10), 1934–1945. doi:10.1162/jocn.2009.21131
  • Turk-Browne, N. B., Scholl, B. J., Johnson, M. K., & Chun, M. M. (2010). Implicit perceptual anticipation triggered by statistical learning. Journal of Neuroscience, 30, 1177–1187.
  • Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488. doi:10.1016/j.tics.2003.09.002
  • Watanabe, T., Nanez, J. E., & Sasaki, Y. (2001). Perceptual learning without perception. Nature, 413(6858), 844–848. doi:10.1038/35101601
  • Yu, R. Q., & Zhao, J. (2018). Object representations are biased toward each other through statistical learning. Visual Cognition, 26(4), 253–267. doi:10.1080/13506285.2018.1435596
  • Zhao, J., Ngo, N., McKendrick, R., & Turk-Browne, N. B. (2011). Mutual interference between statistical summary perception and statistical learning. Psychological Science, 22(9), 1212–1219. doi:10.1177/0956797611419304
  • Zhao, J., & Yu, R. Q. (2016). Statistical regularities reduce perceived numerosity. Cognition, 146, 217–222. doi:10.1016/j.cognition.2015.09.018