Publication Cover
Redox Report
Communications in Free Radical Research
Volume 1, 1994 - Issue 1
3
Views
22
CrossRef citations to date
0
Altmetric
Review Articles

Effects of oxidants and antioxidants evaluated using parinaric acid as a sensitive probe for oxidative stress

Pages 11-21 | Published online: 13 Jul 2016

References

  • Sklar L A, Hudson B S, Simoni R D. Conjugated polyene fatty acids as membrane probes: preliminary characterization. Proc Natl Acad Sci USA 1975: 72: 1649–1653.
  • Sklar L A, Hudson B S, Petersen M, Diamond J. Conjugated polyene fatty acids as fluorescent probes: spectroscopic characterization. Biochemistry 1977; 16: 813–819.
  • Sklar L A, Hudson B S, Simoni R D. Conjugated polyene fatty acids as fluorescent probes: synthetic phospholipid membrane studies. Biochemistry 1977; 16: 819–828.
  • Sklar L A, Miljanich G P, Dratz E A. Phospholipid lateral phase separation and the partition of cis-parinaric acid and trans-parinaric acid among aqueous, solid lipid, and fluid lipid phases. Biochemistry 1979; 18: 1707–1716.
  • Sklar L A, Dratz E A. Analysis of membrane bilayer asymmetry using parinaric acid fluorescent probes. FEBS Lett 1980; 118: 308–313.
  • Somerharju P, Brockerhoff H, Wirtz K W A. A new fluorimetric method to measure protein-catalyzed phospholipid transfer using 1-acyl-2-parinaroylphosphatidylcholine. Biochim Biophys Acta 1981; 649: 521–528.
  • Welti R. Partition of parinaroyl phospholipids in mixed head group systems. Biochemistry 1982; 21: 5690–5693.
  • Berkhout T A, van den Bergh C, Mos H, de Kruijff B, Wirtz K W A. Regulation of the activity of phosphatidylcholine transfer protein by vesicle phosphatidic acid and membrane curvature: a fluorescence study using 2-parinaroylphosphatidylcholine. Biochemistry 1984; 23: 6894–6900.
  • Pugh E L, Kates M, Szabo A G. Studies on fluorescence polarization of 1-acyl-2-cis or trans-parinaroyl-sn-3-glycerophosphorylcholines in model systems and microsomal membranes. Chem Phys Lipids 1982; 30: 55–69.
  • Cosgrove J P, Church D F, Pryor W A. The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids 1987; 22: 299–304.
  • Kuypers F A, van den Berg J J M, Schalkwijk C, Roelofsen B, Op den Kamp J A F. Cis-parinaric acid as a fluorescent membrane probe to determine lipid peroxidation. Biochim Biophys Acta 1987; 921: 266–274.
  • van den Berg J J M, Kuypers F A, Qju J H et al. The use of cisparinaric acid to determine lipid peroxidation in human erythrocyte membranes. Comparison of normal and sickle erythrocyte membranes. Biochim Biophys Acta 1988; 944: 29–39.
  • Tsuchiya M, Scita G, Freisleben H-J, Kagan V E, Packer L. Antioxidant radical-scavenging activity of carotenoids and retinoids compared to α-tocopherol. Methods Enzymol 1992; 213: 460–472.
  • Suzuki Y J, Tsuchiya M, Wassall S R et al. Structural and dynamic membrane properties of α-tocopherol and α-tocotrienol: Implication to the molecular mechanism of their antioxidant potency. Biochemistry 1993; 32: 10692–10699.
  • van den Berg J J M, Kuypers F A, Lubin B H, Roelofsen B, Op den Kamp J A F. Direct and continuous measurement of hydroperoxide-induced oxidative stress on the membrane of intact erythrocytes. Free Radic Biol Med 1991; 11: 255–261.
  • Tecoma E S, Sklar L A, Simoni R D, Hudson B S. Conjugated polyene fatty acids as fluorescent probes: biosynthetic incorporation of parinaric acid by Escherichia coli and studies of phase transitions. Biochemistry 1977; 16: 829–835.
  • Dinis T C P, Almeida L M, Madeira V M C. Lipid peroxidation in sarcoplasmic reticulum membranes: Effect on functional and biophysical properties. Arch Biochem Biophys 1993; 301: 256–264.
  • van den Berg J J M, Op den Kamp J A F, Lubin B H, Roelofsen B, Kuypers F A. Kinetics and site specificity of hydroperoxide-induced oxidative damage in red blood cells. Free Radic Biol Med 1992; 12: 487–498.
  • van den Berg J J M, Kuypers F A, Roelofsen B, Op den Kamp J A F. The cooperative action of vitamins E and C in the protection against peroxidation of parinaric acid in human erythrocyte membranes. Chem Phys Lipids 1990; 53: 309–320.
  • McKenna R, Kézdy F J, Epps D E. Kinetic analysis of the freeradical-induced lipid peroxidation in human erythrocyte membranes: evaluation of potential antioxidants using cisparinaric acid to monitor peroxidation. Anal Biochem 1991; 196: 443–450.
  • van den Berg J J M, Roelofsen B, Op den Kamp J A F, van Deenen L L M. Cooperative protection by vitamins E and C of human erythrocyte membranes against peroxidation. Ann N Y Acad Sci 1989; 570: 527–529.
  • Constantinescu A, Han D, Packer L. Vitamin E recycling in human erythrocyte membranes. J Biol Chem 1993; 268: 10906–10913.
  • Kagan V E, Tsuchiya M, Serbinova E, Packer L, Sies H. Interaction of the pyridoindole stobadine with peroxyl, superoxide and chromanoxyl radicals. Biochem Pharmacol 1993; 45: 393–400.
  • Suzuki Y J, Tsuchiya M, Packer L. Antioxidant activities of dihydrolipoic acid and its structural homologues. Free Radic Res Commun 1993; 18: 115–122.
  • Niki E, Saito T, Kawakami A, Kamiya Y. Inhibition of oxidation of methyl linoleate in solution by vitamin E and vitamin C. J Biol Chem 1984; 259: 4177–4182.
  • Burton G W, Doba T, Gabe E J et al. Autoxidation of biological molecules. 4. Maximizing the antioxidant activity of phenols. J Am Chem Soc 1985; 107: 7053–7065.
  • Hedley D, Chow S. Flow cytometric measurement of lipid peroxidation in vital cells using parinaric acid. Cytometry 1992; 13: 686–692.
  • Hockenbery D M, Oltvai Z N, Yin X-M, Milliman CL, Korsmeyer S J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75: 241–251.
  • Clemens M R, Wailer H D, Lipid peroxidation in erythrocytes. Chem Phys Lipids 1987; 45: 251–268.
  • Chiu D, Kuypers F, Lubin B. Lipid peroxidation in human red cells. Semin Hematol 1989; 26: 257–276.
  • van den Berg J J M, de Fouw N J, Kuypers F A, Roelofsen B, Houtsmuller U M T, Op den Kamp J A F. Increased n-3 polyunsaturated fatty acid content of red blood cells from fish oil-fed rabbits increases in vitro lipid peroxidation, but decreases hemolysis. Free Radic Biol Med 1991; 11: 393–399.
  • Scott M D, Lubin B H, Zuo L, Kuypers F A. Erythrocyte defense against hydrogen peroxide: preeminent importance of catalase. J Lab Clin Med 1991; 118: 7–16.
  • Simões A P C F, van den Berg J J M, Roelofsen B, Op den Kamp J A F. Lipid peroxidation in Plasmodium falciparum-parasitized human erythrocytes. Arch Biochem Biophys 1992; 298: 651–657.
  • van den Berg J J M, Kuypers F A. Oxidative damage and repair of human erythrocyte lipids. In: Op den Kamp J A F, ed. Dynamics of membrane assembly. Berlin: Springer-Verlag, 1992: 141–151.
  • Scott M D, van den Berg J J M, Repka T et al. Effect of excess α-hemoglobin chains on cellular and membrane oxidation in model β-thalassemic erythrocytes. J Clin Invest 1993; 91: 1706–1712.
  • Hebbel R P. Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease pathophysiology. Blood 1991; 77: 214–237.
  • Hebbel R P, Eaton J W. Pathobiology of heme interaction with the erythrocyte membrane. Semin Hematol 1989; 26: 136–149.
  • Chiu D, Lubin B. Oxidative hemoglobin denaturation and RBC destruction: the effect of heme on red cell membranes. Semin Hematol 1989; 26: 128–135.
  • Hebbel R P, Morgan W T, Eaton J W, Hedlund B E. Accelerated autoxidation and heme loss due to instability of sickle hemoglobin. Proc Natl Acad Sci USA 1988; 85: 237–241.
  • Asakura T, Minakata K, Adachi K, Russell M O, Schwartz E. Denatured hemoglobin in sickle erythrocytes. J Clin Invest 1977; 59: 633–640.
  • Rice-Evans C, Baysal E. Role of membrane-bound haemoglobin products in oxidative damage in sickle cell membranes. Acta Haematol 1987; 78: 105–108.
  • Kuypers F A, van den Berg J J M, Lubin B H. Phospholipid asymmetry and diffusion in the membrane of normal and sickle erythrocytes. In: Ohnishi S T, Ohnishi T, eds. Membrane abnormalities in sickle cell disease and in other red blood cell disorders. Boca Raton: CRC Press, 1994: 21–55.
  • van den Berg J J M. Lipid peroxidation processes in the erythrocyte membrane studied with parinaric acid. Thesis, Utrecht University, 1989: 85–100.
  • Lubin B H, van den Berg J J M, Lewis R A, Scott M D, Kuypers F A. Unique properties of the neonatal red cell. In: Xanthou M, Bracci R, Prindull G, eds Neonatal immunology and haematology II. Amsterdam: Elsevier Science Publishers, 1993: 79–89.
  • Brunori M, Falcioni G, Fioretti E, Giardina B, Rotilio G. Formation of superoxide in the autoxidation of the isolated α and β chains of human hemoglobin and its involvement in hemichrome precipitation. Eur J Biochem 1975; 53: 99–104.
  • Joshi W, Leb L, Piotrowski J, Fortier N, Snyder L M. Increased sensitivity of isolated alpha subunits of normal human hemoglobin to oxidative damage and crosslinkage with spectrin. J Lab Clin Med 1983; 102: 46–52.
  • Shinar E, Shalev O, Rachmilewitz B A, Schrier S L. Erythrocyte membrane skeleton abnormalities in severe β-thalassemia. Blood 1987; 70: 158–164.
  • Steinberg D, Parthasarathy S, Carew T E, Khoo J C, Witztum J L. Beyond cholesterol. Modifications of low-density lipoprotein that increase in atherogenicity. N Engl J Med 1989; 320: 915–924.
  • Laranjinha J A N, Almeida L M, Madeira V M C. Lipid peroxidation and its inhibition in low density lipoproteins: quenching of cis-parinaric acid fluorescence. Arch Biochem Biophys 1992; 297: 147–154.
  • Laranjinha J A N, Almeida L M, Madeira V M C. Reactivity of dietary phenolic acids with peroxyl radicals: antioxidant activity upon low density lipoprotein peroxidation. Biochem Pharmacol 1994 (in press).
  • Tribble D L, van den Berg J J M, Motchnik P A et al. Oxidative susceptibility of low density lipoprotein subfractions is related to their ubiquinol-10 and α-tocopherol content. Proc Natl Acad Sci USA 1994; 91: 1183–1187.
  • de Graaf J, Hak-Lemmers H L M, Hectors M P C, Demacker P N M, Hendriks J C M, Stalenhoef A F H. Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler Thromb 1991; 11: 298–306.
  • Tribble D L, Holl L G, Wood P D, Krauss R M. Variations in oxidative susceptibility among six low density lipoprotein subfractions of differing density and particle size. Atherosclerosis 1992; 93: 189–199.
  • Sklar L A, Doody M C, Gotto A M Jr., Pownall H J. Serum lipoprotein structure: resonance energy transfer localization of fluorescent lipid probes. Biochemistry 1980; 19: 1294–1301.
  • Ben-Yashar V, Barenholz Y. Characterization of the core and surface of human plasma lipoproteins. A study based on the use of five fluorophores. Chem Phys Lipids 1991; 60: 1–14.
  • Tribble D L, Lansberg M G, Krauss R M, Kuypers F A, van den Berg J J M. Compartmentalization of oxidative injury in low density lipoproteins (LDL): Evidence for two kinetic pools corresponding to the LDL surface monolayer and hydrophobic core. Free Radic Biol Med 1993; 15: 540.
  • Tribble D L, Lansberg M G, Krauss R M, Kuypers F A, van den Berg J J M. Differing oxidative susceptibility and antioxidant protection of surface and core lipids in low-density lipoprotein subfractions. Circulation 1993; 88: I–1561.
  • Tribble D L, Krauss R M, Lansberg M G, Thiel P, van den Berg J J M. Greater oxidative susceptibility of the surface monolayer in small, dense LDL may contribute to differences in copper-induced oxidation among LDL density subfractions. J Lipid Res 1994 (in press).
  • Esterbauer H, Gebicki J, Pubi H, Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 1992; 13: 341–390.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.