Publication Cover
Redox Report
Communications in Free Radical Research
Volume 1, 1994 - Issue 1
5
Views
34
CrossRef citations to date
0
Altmetric
Review Articles

Transcriptional regulators of the oxidative stress response in prokaryotes and eukaryotes

&
Pages 23-29 | Published online: 13 Jul 2016

References

  • Demple B. Regulation of bacterial oxidative stress genes. Annu Rev Genet 1991; 25: 315–337.
  • Farr S B, Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 1991; 55: 561–585.
  • Christman M F, Morgan R W, Jacobson F S, Ames B N. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 1985; 41: 753–762.
  • Christman M F, Storz G, Ames B N. OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci USA 1989; 86: 3484–3488.
  • Tao K, Makino K, Yonei S, Nakata A, Shinagawa H. Molecular cloning and nucleotide sequencing of oxyR, the positive regulatory gene of a regulon for an adaptive response to oxidative stress in Escherichia coli: homologies between OxyR protein and a family of bacterial activator proteins. Mol Gen Genet 1989; 218: 371–376.
  • Tartaglia L A, Storz G, Ames B N. Identification and molecular analysis of OxyR-regulated promoters important for the bacterial adaptation to oxidative stress. J Mol Biol 1989; 210: 709–719.
  • Altuvia S, Almiron M, Huisman G, Kolter R, Storz G. The dps promoter is activated by OxyR during growth and by IHF and σ in stationary phase. Mol Microbiol 1994; 13: 265–272.
  • Bölker M. Kahmann R. The Escherichia coli regulatory protein OxyR discriminates between methylated and unmethylated states of the phage Mu mom promoter. EMBO J 1989; 8: 2403–2410.
  • Storz G, Tartaglia L A, Ames B N. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 1990; 248: 189–194.
  • Tao K, Makino K, Yonei S, Nakata A, Shinagawa H. Purification and characterization of the Escherichia coli OxyR protein, the positive regulator for a hydrogen peroxide-inducible regulon. J Biochem 1991; 109: 262–266.
  • Tartaglia L A, Gimeno C J, Storz G, Ames B N. Multidegenerate DNA recognition by the OxyR transcriptional regulator. J Biol Chem 1992; 267: 2038–2045.
  • Tao K, Fujita N, Ishihama A. Involvement of the RNA polymerase a subunit C-terminal region in co-operative interaction and transcriptional activation with OxyR protein. Mol Microbiol 1993; 7: 859–864.
  • Greenberg J T, Monach P, Chou J H, Josephy P D, Demple B. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci USA 1990; 87: 6181–6185.
  • Tsaneva I R, Weiss B. sox R, a locus governing a superoxide response regulon in Escherichia coli K-12. J Bacteriol 1990; 172: 4197–4205.
  • Amábile-Cuevas C F, Demple B. Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon. Nucleic Acids Res 1991; 19: 4479–4484.
  • Wu J, Weiss B. Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon in Escherichia coli. J Bacteriol 1991; 173: 2864–2871.
  • Liochev S I, Fridovich I. Fumarase C. The stable fumarase of Escherichia coli, is controlled by the soxRS regulon. Proc Natl Acad Sci USA 1992; 89: 5892–5896.
  • Nunoshiba T, deRojas-Walker T, Wishnok J S, Tannenbaum S R, Demple B. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc Natl Acad Sci USA 1993; 90: 9993–9997.
  • Chou J H, Greenberg J T, Demple B. Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J Bacteriol 1993; 175: 1026–1031.
  • Wu J, Weiss B. Two-stage induction of the soxRS (superoxide response) regulon of Escherichia coli. J Bacteriol 1992; 174: 3915–3920.
  • Nunoshiba T, Hidalgo E, Amabile-Cuevas C F, Demple B. Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. J Bacteriol 1992; 174: 6054–6060.
  • Hidalgo E. Demple B. An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein. EMBO J 1994; 13: 138–146.
  • Greenberg J T, Chou J H, Monach P A. Activation of oxidative stress genes by mutations at the soxQ/cfxB/mar A locus of Escherichia coli. J Bacteriol 1991; 173: 4433–4439.
  • Cohen S P, Hächler H, Levy S B. Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J Bacteriol 1993; 175: 1484–1492.
  • Ariza R R, Cohen S P, Bachhawat N, Levy S B, Demple B. Repressor mutations in the mar AB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli. J Bacteriol 1994; 176: 143–148.
  • Hengge-Aronis R. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in Escherichia coli. Cell 1993; 72: 165–168.
  • Loewen P C, Triggs B L. Genetic mapping of katF, a locus that with katE affects the synthesis of a second catalase species in Escherichia coli. J Bacteriol 1984; 160: 668–675.
  • Sak B D, Eisenstark A, Touati D. Exonuclease III and the catalase hydroperoxidase II in Escherichia coli are both regulated by the katF gene product. Proc Natl Acad Sci USA 1989; 86: 3271–3275.
  • Almirón M, Link A J, Furlong D, Kolter R. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 1992; 6: 2646–2654.
  • Ivanova A, Miller C, Glinsky G, Eisenstark A. Role of rpoS (katF) in oxyR-independent regulation of hydroperoxidase I in Escherichia coli. Mol Microbiol 1994; 12: 571–578.
  • Mukhopadhyay S, Schellhorn, H E. Induction of Escherichia coli hydroperoxidase I by acetate and other weak acids. J Bacteriol 1994; 176: 2300–2307.
  • Compan I, Touati D. Interaction of six global transcription regulators in expression of manganese superoxide dismutase in Escherichia coli K-12. J Bacteriol 1993, 175: 1687–1696.
  • Iuchi S, Lin E C C. Adaptation of Escherichia coli to redox environments by gene expression. Mol Microbiol 1993; 9: 9–15.
  • Spiro S, Guest J R. Adaptive responses to oxygen limitation in Escherichia coli. Trends Biochem Sci 1991; 16: 310–314.
  • Bagg A, Neilands J B. Molecular mechanism of regulation of siderophore-mediated iron assimilation. Micro biol Rev 1987; 51: 509–518.
  • Freundlich M, Ramani N, Mathew E, Sirko A, Tsui P. The role of integration host factor in gene expression in Escherichia coli. Mol Microbiol 1992; 6: 2557–2563.
  • Gralla E B, Kosman D J. Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv Genet 1992; 30: 251–319.
  • Thiele D J. ACEI regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol Cell Biol 1988; 8: 2745–2752.
  • Fürst P, Hu S, Hackett R, Hamer D. Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 1988; 55: 705–717.
  • Carri M T, Galiazzo F, Ciriolo M R, Rotilio G. Evidence for co-regulation of Cu, Zn superoxide dismutases and metallothionein gene expression in yeast through transcriptional control by copper via the ACE 1 factor. FEBS Lett 1991; 278: 263–266.
  • Gralla E B, Thiele DJ, Silar P, Valentine J S. ACE1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene. Proc Natl Acad Sci USA 1991; 88: 8558–8562.
  • Jungmann J, Reins H A, Lee J, Romeo A, Hasset R, Kosman D, Jentsch S. MACI, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J. 1993; 12: 5051–5056.
  • Marchler G, Schüller C, Adam G, Ruis H A. Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 1993; 12: 1997–2003.
  • Moye-Rowley W S, Harshman K D, Parker C S. Yeast YAP1 encodes a novel form of the jun family of transcriptional activator proteins. Genes Dev 1989; 3: 283–292.
  • Schnell N, Krems B, Entian K D. The PAR1 (YAP1/SNQ3) gene of Saccharomyces cerevisiae, a c-jun homologue, is involved in oxygen metabolism. Curr Genet 1992, 21: 269–273.
  • Kuge S, Jones N. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 1994; 13: 655–664.
  • Zitomer R S, Lowry C V. Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Micro biol Rev 1992; 56: 1–11.
  • Winkler H G, Adams G, Mattes E, Schanz M, Hartig A, Ruis H. Coordinate control of synthesis of mitochondrial and non-mitochondrial hemoproteins: a binding site for the HAP1 (CYP1) protein in the UAS region of the yeast catalase T gene (CTT1). EMBO J 1988; 7: 1799–1804.
  • Simon M, Adam G, Rapatz W, Spevak W, Ruis H. The Saccharomyces cerevisiae ADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins. Mol Cell Biol 1991; 11: 699–704.
  • Baeuerle P A. The inducible transcription activator NF-κB: regulation by distinct protein subunits. Biochim Biophys Acta 1991; 1072: 63–80.
  • Schreck R, Rieber P, Baeuerle P A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J 1991; 10: 2247–2258.
  • Toledano M B, Leonard W J. Modulation of transcription factor NF-κB binding activity by oxidation-reduction in vitro. Proc Natl Acad Sci USA 1991, 88: 4328–4332.
  • Morgan J I, Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 1991; 14: 421–451.
  • Devary Y, Gottlieb R A, Lau L F, Karin M. Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol Cell Biol 1991; 11: 2804–2811.
  • Nose K, Shibanuma M, Kikuchi K, Kageyama H, Sakiyama S, Kuroki T. Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur J Biochem 1991; 201: 99–106.
  • Amstad P A, Krupitza G, Cerutti P A. Mechanism of c-fos induction by active oxygen. Cancer Res 1992; 52: 3952–3960.
  • Devary Y, Gottlieb RA, Smeal T, Karin M. The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell 1992; 71: 1081–1091.
  • Meyer M, Schreck R, Baeuerle P A. H2O2 and antioxidants have opposite effects on activation of NF-κB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J 1993; 12: 2005–2015.
  • Abate C, Patel L, Rauscher F J, Curran T. Redox regulation of Fos and Jun DNA-binding activity in vitro. Science 1990; 249: 1157–1161.
  • Xanthoudakis S, Curran T. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J 1992; 11: 653–665.
  • Xanthoudakis S, Miao G, Wang F, Pan Y C E, Curran T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J 1992; 11: 3323–3335.
  • Toledano M B, Kullik I, Trinh F, Baird PT, Schneider T D, Storz G. Redox-dependent shift of OxyR-DNA contacts along an extended DNA binding site: a mechanism for differential promoter selection. Cell 1994 (in press).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.