Publication Cover
Redox Report
Communications in Free Radical Research
Volume 1, 1995 - Issue 2
13
Views
41
CrossRef citations to date
0
Altmetric
Review Articles

The effect of oxidative stress on Saccharomyces cerevisiae

Pages 89-95 | Published online: 13 Jul 2016

References

  • Ames B N. Dietary carcinogens and anticarcinogens. Science 1983; 221: 1256–1263.
  • Storz G, Christman M F, Sies H, Ames B N. Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium. Proc Natl Acad Sci USA 1987; 84: 8917–8921.
  • Wolff S P, Garner A, Dean R T. Free radicals, lipids and protein degradation. TIBS 1986; 11: 27–31.
  • Demple B. Regulation of bacterial oxidative stress genes. Ann Rev Genet 1991; 25: 315–317.
  • Farr S B, Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 1991; 55: 561–585.
  • Kullik I, Stortz G. Transcriptional regulators of the oxidative stress response in prokaryotes and eukaryotes. Redox Report 1994; 1: 23–29.
  • Meister A. Glutathione metabolism and its selective modification. J Biol Chem 1988; 263: 17205–17208.
  • Kistler M, Summer K H, Eckardt F. Isolation of glutathione-deficient mutants of the yeast Saccharomyces cerevisiae. Mutation Res 1986; 173: 117–120.
  • Ohtake Y, Yabuuchi S. Molecular cloning of the γ-glutamylcysteine synthetase gene of Saccharomyces cerevisiae. Yeast 1991; 7: 953–961.
  • Lisowsky T. A high copy number of yeast γ-glutamylcysteine synthetase suppresses a nuclear mutation affecting mitochondrial translation. Curr Genet 1993; 23: 408–413.
  • Hamer D H. Metallothionein. Ann Rev Biochem 1986; 55: 913–951.
  • Tamai K T, Gralla E B, Ellerby L M, Vallentine J S. Yeast and mammalian metalothioneins functionally substitute for yeast copper-zinc superoxide dismutase. Proc Natl Acad Sci USA 1993; 90: 8013–8017.
  • Cohen G, Rapatz W, Ruis H. Sequence of the Saccharomyces cerevisiae CTAI gene and amino acid sequence of catalase A derived from it. Eur J Biochem 1988; 176: 159–163.
  • Hartig A, Ruis H. Nucleotide sequence of the Saccharomyces cerevisiae CTTI gene and deduced amino-acid sequence of yeast catalase T. Eur J Biochem 1986; 160: 487–490.
  • Ruis H, Hamilton B. Regulation of yeast catalase genes. In: Molecular Biology of Free Radical Scavenging Systems. CSH Press, 1992: pp 153–172.
  • Bermingham-McDonogh O, Gralla E B, Valentine J S. The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: cloning, sequencing, and biological activity. Proc Natl Acad Sci USA 1988; 85: 4789–4793.
  • Van Loon A P G M, Pesold-Hurt B, Schatz G. A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc Natl Acad Sci USA 1986; 83: 3820–3824.
  • Guidot D M, McCord J M, Wright R M, Repine J E. Absence of electron transport (Rho° state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. J Biol Chem 1993; 268: 26699–26703.
  • Jamieson D J, Rivers S L, Stephen D W. Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress. Microbiology, 1994 (in press).
  • Gralla E B, Valentine J S. Null mutants of Saccharomyces cerevisiae Cu, Zn superoxide dismutase: characterization and spontaneous mutation rates. J Bacterol 1991; 173: 5918–5920.
  • Galiazzo F, Schiesser A, Rotilio G. Glutathione peroxidase in yeast. Presence of the enzymes and induction by oxidative conditions. Biochem Biophys Res Comm 1987; 147: 1200–1205.
  • Inoue Y, Kobayashi S, Kimura A. Cloning and phenotypic characterisation of a gene enhancing resistance against oxidative stress in Saccharomyces cerevisiae. J Ferment Eng 1993; 75: 327–331.
  • Gan Z R. Yeast thioredoxin genes. J Biol Chem 1991; 266: 1692–1696.
  • Muller E G D. Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle. J Biol Chem 1991; 266: 9194–9202.
  • Kuge S, Jones N. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 1994; 13: 655–664.
  • Kim I H, Kim K, Rhee S G. Induction of an antioxidant protein of Saccharomyces cerevisiae by O2, Fe3+, or 2-mercaptoethanol. Proc Natl Acad Sci USA 1989; 86: 6018–6022.
  • Chae H Z, Robison K, Poole L B, Church G, Storz G, Rhee S G. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci USA 1994; 91: 7017–7021.
  • Kwon S J, Park J-W, Choi W-K, Kim I H, Kin K. Inhibition of metal-catalysed oxidation systems by a yeast protector protein in the presence of thioredoxin. Biochem Biophys Res Commun 1994; 201: 8–15.
  • Collinson L P, Dawes I W. Inducibility of the response of yeast cells to peroxide stress. J Gen Microbiol 1992; 138: 329–335.
  • Flattery-O'Brien J, Collinson L P, Dawes I W. Saccharomyces cerevisiae has an inducible response to menadione which differs from that to hydrogen peroxide. J Gen Microbiol 1993; 139: 501–507.
  • Jamieson D J. Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J Bacteriol 1992; 174: 6678–6681.
  • Christman M F, Morgan R W, Jacobson F S, Ames B N. Positive control of a regulon for defences against oxidative stress and some heat shock proteins in Salmonella typhimurium. Cell 1986; 41: 753–762.
  • Wu J, Weiss B. Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli. J Bacteriol 1991; 173: 2864–2871.
  • Werner-Washburne M, Becker J, Kosic-Smithers J, Craig E A. Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J Bacteriol 1988; 171: 2680–2688.
  • Engelberg D, Zandi E, Parker C S, Karin M. The yeast and mammalian ras pathways control transcription of heat shock genes independently of heat shock transcription factor. Mol Cell Biol 1994; 14: 4929–4937.
  • Praekelt U M, Meacock P A. HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Mol Gen Genet 1990; 223: 97–106.
  • Lida H. Multistress resistance of Saccharomyces cerevisiae is generated by insertion of retrotransposon Ty into the 5′ coding region of the adenylate cyclase gene. Mol Cell Biol 1988; 8: 5555–5560.
  • Shin D-Y, Matsumoto K, Iida H, Uno I, Ishikawa T. Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation. Mol Cell Biol 1987; 7: 244–250.
  • Kondo K, Inouye M. TIPI, a cold shock-inducible gene of Saccharomyces cerevisiae. J Biol Chem 1991; 266: 17537–17544.
  • Mager W H, Moradas-Ferreira P. Stress response of yeast. Biochem J 1993; 290: 1–13.
  • Costa V, Reis E, Quintanilha A, Moradas-Ferreria P. Aquisition of ethanol tolerance in Saccharomyces cerevisiae: the role of the mitochondrial superoxide dismutase. Arch Biochem Biophys 1993; 300: 608–614.
  • Varela J C S, Van-Beekvelt C, Planta R J, Mager W H. Osmostress-induced changes in yeast gene expression. Mol Microbiol 1992; 6: 2183–2190.
  • Piper P W. Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 1993; 11: 339–356.
  • Wieser R, Adam G, Wagner A et al. Heat shock factor-independent heat control of transcription of the CTTI gene encoding the cytosolic catalase T of Saccharomyces cerevisiae. J Biol Chem 1991; 266: 12406–12411.
  • Gropper T, Rensing L. Inhibitors of proteases and other stressors induce low-molecular weight heat-shock proteins in Saccharomyces cerevisiae. Exptl Mycol 1993; 17: 46–54.
  • Plesset J, Palm C, McLaughlin C S. Induction of heat shock proteins and thermotolerance by ethanol. Biochem Biophys Res Comm 1982; 108: 1340–1345.
  • Schnell N, Krems B, Entian K-D. The PARI (YAP1/SNQ3) gene of Saccharomyces cerevisiae, a c-jun homologue, is involved in oxygen metabolism. Curr Genet 1992; 21: 269–273.
  • Grey M, Brendel M. Overexpression of the SNQ3/YAP1 gene confers hyper-resistance to nitrosoguanidine in Saccharomyces cerevisiae via a glutathione independent mechanism. Curr Genet 1994; 25: 469–471.
  • Hussain M, Lenard J. Characterisation of PDR4, a Saccharomyces cerevisiae gene that confers pleiotropic drug resistance in high-copy number. Gene 1991; 101: 149–152.
  • Harshman K D, Moye-Rowley W S, Parker C S. Transcriptional activiation by the SV40 AP-1 recognition element in yeast is mediated by a factor similar to AP-1 that is distinct from GCN4. Cell 1988; 53: 321–330.
  • Wu A-L, Moye-Rowlely W S. GSH1, which encodes γ-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation. Mol Cell Biol 1994; 14: 5832–5839.
  • Bossier P, Fernandes L, Rocha D, Rodrigues-Pousada C. Overexpression of YAP2, coding for a new yAP protein, and YAP1 in Saccharomyces cerevisiae alleviates growth inhibition caused by 1,10-phenanthroline. J Biol Chem 1993; 268: 23640–23645.
  • Wu A, Wemmie J A, Edgington N P, Goebl M, Guevara J L, Moye-Rowley W S. Yeast bZip proteins mediate pleiotropic drug and metal resistance. J Biol Chem 1993; 268: 18850–18858.
  • Cadenas E. Biochemistry of oxygen toxicity. Annu Rev Biochem 1989; 58: 79–110.
  • Gralla E B, Thiele D J, Silar P, Valentine J S. ACE1, a yeast copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene. Proc Natl Acad Sci USA 1991; 88: 8558–8562.
  • Jungmann J, Reins H-A, Lee J, Romeo A R H, Kosman D, Jentsch S. MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors and is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J 1993; 12: 5051–5056.
  • Watson K. Microbial stress proteins. Advances in microbial physiology. 1990; 31: 183–223.
  • Winker H, Adam G, Mattes E, Schanz M, Hartig A, Ruis H. Co-ordinate control of synthesis of mitochondrial and non-mitochondrial hemoproteins: a binding site for the HAP1 (CYP1) protein in the UAS region of the yeast catalase T gene (CTT1). EMBO J 1988; 7: 1799–1804.
  • Weesterbeek-Marres C A M, Moore M M, Autor A P. Regulation of manganese superoxide dismutase in Saccharomyces cerevisiae. Eur J Biochem 1988; 174: 611–620.
  • Guarente L, Lalonde B, Gifford P, Alani E. Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYCI gene of S. cerevisiae. Cell 1984; 36: 503–511.
  • Gralla E B, Kosman D J. Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv Genet 1992; 30: 251–319.
  • Cheng L, Watt R, Piper P W. Polyubiquitin gene expression contributes to oxidative stress resistance in respiratory yeast (Saccharomyces cerevisiae). Mol Gen Genet 1994; 243: 358–362.
  • Engelberg D, Klein C, Martinetto H, Struhl K, Karin M. The UV response involving the RAS signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell 1994; 77: 381–390.
  • Marchler G, Schuller C, Adam G, Ruis H. A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 1993; 12: 1997–2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.