Publication Cover
Redox Report
Communications in Free Radical Research
Volume 3, 1997 - Issue 3
90
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Pharmacologic interception of heme: a potential therapeutic strategy for the treatment of β thalassemia?

, , &
Pages 159-167 | Received 28 Jan 1997, Accepted 19 Jun 1997, Published online: 13 Jul 2016

REFERENCES

  • Watkins J A, Kawanishi S, Caughey W S. Autoxidation reactions of hemoglobin A free from other red cell components: A minimal mechanism. Biochem Biophys Res Commun 1985; 132: 742–748.
  • Hebbel R P, Morgan W T, Eaton J W, Hedlund B E. Accelerated autoxidation and heme loss due to instability of sickle hemoglobin. Proc Natl Acad Sci USA 1988; 85: 237–241.
  • Rank B H, Carlsson J, Hebbel R P. Abnormal redox status of membrane-protein thiols in sickle erythrocytes. J Clin Invest 1985; 75: 1531–1537.
  • Scott MD, van den Berg JJM, Repka T et al. Effect of excess α-hemoglobin chains on cellular and membrane oxidation in model β thalassemic cells. J Clin Invest 1993; 91: 1706–1712.
  • Sadrzadeh S M H, Graf E, Panter S S, Hallaway P E, Eaton J W. Hemoglobin: A biologic Fenton reagent. J Biol Chem 1984; 259: 14354–14356.
  • Kuross S A, Hebbel R P. Nonheme iron in sickle erythrocyte membranes: Association with phospholipids and potential role in lipid peroxidation. Blood 1988; 72: 1278–1285.
  • Joshi W, Leb L, Piotrowski J, Fortier N, Snyder L M. Increased sensitivity of isolated alpha subunits of normal human hemoglobin to oxidative damage and crosslinkage with spectrin. J Lab Clin Med 1983; 102: 46–52.
  • Scott M D, van den Berg J, Wagner T C, Rouyer-Fessard Ph, Beuzard Y, Lubin B H. Effect of entrapped α-hemoglobin chains on erythrocyte oxidation. Blood 1990; 76 (suppl.1) 290 (75a).
  • Scott M D, Eaton J W. Thalassemic erythrocytes: Cellular suicide arising from iron and glutathione-dependent oxidation reactions? Br J Haem 1995; 91: 811–819.
  • Fosburg M T, Nathan D G. Treatment of Cooley's anemia. Blood 1990; 76: 435–444.
  • Banyal H S, Fitch C D. Ferriprotoporphyrin IX binding substances and the mode of action of chloroquine against malaria. Life Sci 1982; 31: 1141–1144.
  • Fitch C D. Ferriprotoporphyrin IX: role in chloroquine susceptibility and resistance in malaria. Prog Clin Biol Res 1989; 313: 45–52.
  • Fitch C D, Chevli R, Kanjananggulpan P, Dutta P, Chevli K, Chou A C. Intracellular ferriprotoporphyrin IX is a lytic agent. Blood 1983; 62: 1165–1168.
  • Meshnick S R. Chloroquine as intercalator: a hypothesis revived. Parasitol Today 1990; 6: 77–79.
  • Wood P A, Rock L M, Eaton J W. Chloroquine resistance and host cell hemoglobin catabolism in Plasmodium berghei. Prog Clin Biol Res 1984; 155: 159–169.
  • Zhang Y, Hempelmann E. Lysis of malarial parasites and erythrocytes by ferriprotoporphyrin IX-chloroquine and the inhibition of this effect by proteins. Biochem Pharmacol 1987; 36: 1267–1273.
  • Elder G H. The cutaneous porphyrias. Semin Dermatol 1990; 9: 63–69.
  • Goerz G, Bolsen K, Merk H. Influence of chloroquine on the porphyrin metabolism. Arch Dermatol Res 1985; 277: 114–117.
  • Sweeney G D. Porphyria cutanea tarda, or the uroporphyrinogen decarboxylase deficiency diseases. Clin Biochem 1986; 19: 3–15.
  • Chou A C, Fitch C D. Hemolysis of mouse erythrocytes by ferriprotoporphyrin IX and Chloroquine: Chemotherapeutic implications. J Clin Invest 1980; 166: 856–858.
  • Dutta P, Fitch C D. Diverse membrane-active agents modify the hemolytic response to ferriprotoporphyrin IX. J Pharm Exp Therapeutics 1983; 225: 729–734.
  • Abraham E C, Reese A, Stallings M, Huisman T H J. Separation of human hemoglobins by DEAE-cellulose chromatography using glycine-KCN-NaCl developers. Hemoglobin 1976; 1: 27–44.
  • Robinson A R, Robson M, Harrison A P, Zuelzer W W. A new technique for differentiation of hemoglobin. J Lab Clin Med 1957; 50: 745–752.
  • Bucci E, Fronticelli C. A new method for the preparation of α and β subunits of human hemoglobin. J Biol Chem 1965; 240: 551–552.
  • Spence J T, Underwood B J, Duncan C P, Cotton J W. Elementary Statistics, 3E. New York, Appleton-Century-Crofts 1968: 108–112.
  • Dodge J T, Mitchell C, Hanahan D J. The preparation and characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 1963; 100: 119–130.
  • Artiss J D, Vinogradov S, Zak B. Spectrophotometric study of several sensitive reagents for serum iron. Clin Biochem 1981; 14: 311–315.
  • Chung M C. A specific iron stain for iron-binding proteins in polyacrylamide gels: application to transferrin and lactoferrin. Anal Biochem 1985; 48: 498–502.
  • Gutteridge J M C. Free radical damage to lipids, amino acids, carbohydrates, and nucleic acids determined by thiobarbituric acid reactivity. Int J Biochem 1982; 14: 649–653.
  • Jacob H S, Jandl J H. A simple visual screening test for glucose-6-phosphate dehydrogenase deficiency employing ascorbate and cyanide. N Engl J Med 1966; 274: 1162–1167.
  • Margoliash E, Novogrodsky A, Schejter A. Irreversible reaction of 3-amino-1,2,4-triazole and related inhibitors with the protein of catalase. Biochem J 1960; 74: 339–348.
  • Winterbourn C C. Oxidative reactions of hemoglobin. Meth Enzymol 1990; 186: 265–272.
  • Szebeni J, Winterbourn C C, Carrell R W. Oxidative interactions between hemoglobin and membrane lipid. A liposome model. Biochem J 1984; 220: 685–692.
  • Scott M D, Kuypers F A, Bütikofer P, Bookchin R M, Ortiz O, Lubin B H. Effect of osmotic lysis-resealing on red cell structure and function. J Lab Clin Med 1990; 115: 470–480.
  • Scott M D, Rouyer-Fessard P, Lubin B H, Beuzard Y. Entrapment of purified α-hemoglobin chains in normal erythrocytes: A model for β thalassemia. J Biol Chem 1990; 265: 17953–17959.
  • Scott M D, Rouyer-Fessard P, Ba M S, Lubin B H, Beuzard Y. α- and β- hemoglobin chain induced changes in normal erythrocyte deformability: comparison to β thalassemia intermedia and Hb H disease. Br J Haem 1992; 80: 519–526.
  • Scott M D. Entrapment of purified α-hemoglobin chains in normal erythrocytes as a model of human β thalassemia. In: Magnani M, DeLoach J R eds. The Use of Resealed Erythrocytes as Carriers and Bioreactors. New York: 1982; Plenum, 139–148.
  • Scott M D, Ranz A, Kuypers F A, Lubin B H, Meshnick S R. Parasite uptake of desferrioxamine: a prerequisite for antimalarial activity. Br J Haem 1990; 75: 598–602.
  • Scott M D, Wagner T C. Chloroquine inhibition of iron release from hemin, hemoglobin and α-hemoglobin chains. Blood 1992; 80 (suppl. 1), 290.
  • Brown S B, Hatzikonstantinou H. The dimerization of ferrihaems: IV. Studies on haematoferrihaem and a general appraisal of the nature and implications of dimerization. Biochim Biophys Acta 1979; 585: 141–153.
  • Brown S B, Hatzikonstantinou H, Herries D G. The dimerization of ferrihaems: I. The effect of buffer ions and specific cations on deuteroferrihaem dimerization. Biochim Biophys Acta 1978; 539: 338–351.
  • Brown S B, Hatzikonstantinou H. The dimerization of ferrihaems: II. Equilibrium and kinetic studies of mesoferrihaem dimerization. Biochim Biophys Acta 539: 352–363.
  • Slater A F, Swiggard W J, Orton B R, Flitter W D, Goldberg D E, Cerami A, Henderson G B. An iron-carboxylate bond links the heme units of malaria pigment. Proc Natl Acad Sci USA 1991; 88: 325–329.
  • Slater A F, Cerami A. Inhibition by chloroquine of a novel heme polymerase enzyme activity in malaria trophozoites. Nature 1992; 355: 167–169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.