Publication Cover
Redox Report
Communications in Free Radical Research
Volume 22, 2017 - Issue 6
807
Views
17
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Protective effect exerted by soil phosphorus on soybean subjected to arsenic and fluoride

, , &

References

  • López Lecube M, Noriega G, Santa Cruz D, et al. Indole acetic acid is responsible for the protection against oxidative stress caused by drought in soybean plants: the role of heme oxygenase induction. Redox Rep. 2014;19(6):242–250. doi: 10.1179/1351000214Y.0000000095
  • Hasanuzzaman M, Nahar K, Roychowdhury R, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci. 2013;14(5):9643–9684. doi: 10.3390/ijms14059643
  • Noriega G, Caggiano E, Lecube ML, et al. The role of salicylic acid in the prevention of oxidative stress elicited by cadmium in soybean plants. Biometals. 2012;25(6):1155–1165. doi: 10.1007/s10534-012-9577-z
  • Zilli C, Balestrasse K, Yannarelli G, et al. Heme oxygenase up-regulation under salt stress protects nitrogen metabolism in nodules of soybean plants. Environ Exp Bot. 2008;64:83–89. doi: 10.1016/j.envexpbot.2008.03.005
  • Bustingorri C, Lavado R. Soybean as affected by high concentrations of arsenic and fluoride in irrigation water in controlled conditions. Agric Water Manag. 2014;144:134–139. doi: 10.1016/j.agwat.2014.06.004
  • Brammer H, Ravenscroft P. Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environ Inter. 2009;35:647–654. doi: 10.1016/j.envint.2008.10.004
  • Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann Rev Plant Biol. 2002;53:159–182. doi: 10.1146/annurev.arplant.53.100301.135154
  • Molassiotis A, Sotiropoulos T, Tanou G, et al. Boron induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh). Env Exp Bot. 2006;56:54–62. doi: 10.1016/j.envexpbot.2005.01.002
  • Namdjoyan S, Khavari-Nejad RA, Bernard F, et al. Antioxidant defense mechanisms in response to cadmium treatments in two safflower cultivars. Russ J Plant Physiol. 2011;58:467–477. doi: 10.1134/S1021443711030149
  • Adriano D. Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals. 2nd ed. New York: Springer; 2001.
  • Meharg A, Macnair M. Polymorphism and physiology of arsenate tolerance in Holcus lanatus L. from an uncontaminated site. Plant Soil. 1992;146:219–225. doi: 10.1007/BF00012015
  • Wu F, Liu X, Wu S, et al. Effects of mycorrhizal inoculation of upland rice on uptake kinetics of arsenate and arsenite Fuyong. Plant Nutr Soil Sci. 2015;178:333–338. doi: 10.1002/jpln.201400461
  • Esteban E, Carpena R, Meharg A. High-affinity phosphate/arsenate transport in white lupin Lupinus albus) is relatively insensitive to phosphate status. New Phytol. 2003;158:165–173. doi: 10.1046/j.1469-8137.2003.00713.x
  • Lessl JT, Guan DX, Sessa E, et al. Transfer of arsenic and phosphorus from soils to the fronds and spores of arsenic hyperaccumulator Pteris vittata and three non-hyperaccumulators. Plant Soil. 2015;390:49–60. doi: 10.1007/s11104-014-2376-2
  • Wang J R, Zhao F, Meharg A. Mechanism of arsenic hyperaccumulation in Pteris vittata L.: uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol. 2002;130:1552–1561. doi: 10.1104/pp.008185
  • Tu S, Ma L. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot. 2003;50:243–251. doi: 10.1016/S0098-8472(03)00040-6
  • Bleeker P, Schat H, Vooijs R, et al. Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol. 2003;157:33–38. doi: 10.1046/j.1469-8137.2003.00542.x
  • Signes-Pastor A, Burló F, Mitra K, et al. Arsenic biogeochemistry as affected by P fertilizer addition, redox potential and pH in a west Bengal (India) soil. Geoderma. 2007;137:504–510. doi: 10.1016/j.geoderma.2006.10.012
  • Fayiga A, Ma L. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyper-accumulator Pteris vittata. Sci Total Environ. 2006;359:17–25. doi: 10.1016/j.scitotenv.2005.06.001
  • Loganathan P, Liu Q, Hedley M, et al. Chemical fractionation of fluorine in soils with a long-term phosphate fertiliser history. Aust J Soil Res. 2007;45:390–396. doi: 10.1071/SR07030
  • Balestrasse K, Gardey L, Gallego S, et al. Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress. Aust J Plant Physiol. 2001;28:497–504.
  • Bustingorri C, Balestrasse K, Lavado R. Effects of high arsenic and fluoride soil concentrations on soybean plants. Phyton. 2015;84:407–415.
  • Sparks D, Page A, Helmke P, et al. Chemical methods. Madison (WI): ASA-SSSA Book Series; 1996.
  • Basta N, Ryan, JA, Chaney RL. Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. J Environ Qual. 2005;34:49–63. doi: 10.2134/jeq2005.0049dup
  • APHA. Standard methods for the examination of water and wastes. Washington (DC): American Public Health Association; 1993.
  • USEPA. Test methods for evaluating solid waste. Washington (DC): United States Environmental Protection Agency; 2006.
  • Heath R, Packer L. Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189–198. doi: 10.1016/0003-9861(68)90654-1
  • Wintermans J, de Mots A. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophys Acta. 1965;109(2):448–453. doi: 10.1016/0926-6585(65)90170-6
  • Anderson M. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985;113:548–554. doi: 10.1016/S0076-6879(85)13073-9
  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59:527–605.
  • Becana M, Aparicio-Tejo P, Irigoyen J, et al. Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol. 1986;82:1169–1171. doi: 10.1104/pp.82.4.1169
  • Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3
  • Singh N, Ma L, Srivastava M, et al. Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci. 2006;170:274–282. doi: 10.1016/j.plantsci.2005.08.013
  • Stoeva N, Bineva T. Oxidative changes and photosynthesis in oat plants grown in as contaminated soil. Bulg J Plant Physiol. 2003;29:87–95.
  • Mascher R, Lippmann B, Holzinger S, et al. Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci. 2002;163:961–969. doi: 10.1016/S0168-9452(02)00245-5
  • Li Y, Dankher O, Carreira L, et al. The shoot-specific expression of γ-glutamylcysteine synthetase directs the long distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol. 2006;141:288–298. doi: 10.1104/pp.105.074815
  • Hartley-Whitaker J, Ainsworth G, Meharg A. Copper and arsenate induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ. 2001;24:713–722. doi: 10.1046/j.0016-8025.2001.00721.x
  • Leopold I, Günther D, Schmidt J, et al. Phytochelatins and heavy metal tolerance. Phytochemistry. 1999;50:1323–1328. doi: 10.1016/S0031-9422(98)00347-1
  • Jozefczak M, Remans T, Vangronsveld J, et al. Is a key player in metal-induced oxidative stress defenses. Int J Mol Sci. 2012;13(3):3145–3175. doi: 10.3390/ijms13033145
  • Panaullah G, Alam T, Hossain M, et al. Arsenic toxicity to rice (Oryza sativa L). Plant Soil. 2009;317:31–39. doi: 10.1007/s11104-008-9786-y
  • Pigna M, Cozzolino V, Violante A, et al. Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water Air Soil Poll. 2009;197:371–380. doi: 10.1007/s11270-008-9818-5
  • Stoeva N, Berova M, Zlatev Z. Effect of arsenic on some physiological parameters in bean plants. Biol Plantarum. 2005;49(2):293–296. doi: 10.1007/s10535-005-3296-z
  • Mallick S, Sinam G, Sinha S. Study on arsenate tolerant and sensitive cultivars of Zea mays L. Differential detoxification mechanism and effect on nutrients status. Ecotoxicol Environ Saf. 2011;74:1316–1324. doi: 10.1016/j.ecoenv.2011.02.012
  • Gomes M, Carvalho M, Carvalho G, et al. Phosphorus improves arsenic phytoremediation by Anadenanthera peregrina by alleviating induced oxidative stress. Int J Phytoremediation. 2013;15(7):633–646. doi: 10.1080/15226514.2012.723064
  • Gunes A, Pilbeam D, Inal A. Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil. 2009;314(1):211–220. doi: 10.1007/s11104-008-9719-9
  • Pigna M, Cozzolino V, Giandonato Caporale A, et al. Effect of P fertilization on As nutrition in wheat. J Soil Sci Plant Nutr. 2010;10(4):428–442. doi: 10.4067/S0718-95162010000200004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.