Publication Cover
Redox Report
Communications in Free Radical Research
Volume 22, 2017 - Issue 6
2,675
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Caffeine prevents high-intensity exercise-induced increase in enzymatic antioxidant and Na+-K+-ATPase activities and reduction of anxiolytic like-behaviour in rats

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Toigo M, Boutellier U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol. 2006;97:643–663. doi: 10.1007/s00421-006-0238-1
  • Gibala MJ, Little JP, van Essen M, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575:901–911. doi: 10.1113/jphysiol.2006.112094
  • Sano A, Koshinaka K, Abe N, et al. The effect of high-intensity intermittent swimming on post-exercise glycogen supercompensation in rat skeletal muscle. J Physiol Sci. 2012;62:1–9. doi: 10.1007/s12576-011-0170-y
  • Osawa Y, Azuma K, Tabata S, et al. Effects of 16-week high-intensity interval training using upper and lower body ergometers on aerobic fitness and morphological changes in healthy men: a preliminary study. Open Access J Sports Med. 2014;5:257–265. doi: 10.2147/OAJSM.S68932
  • Matsui T, Ishikawa T, Ito H, et al. Brain glycogen supercompensation following exhaustive exercise. J Physiol. 2012;590:607–616. doi: 10.1113/jphysiol.2011.217919
  • Saucedo Marquez CM, Vanaudenaerde B, Troosters T, et al. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J Appl Physiol. 2015;119:1363–1373. doi: 10.1152/japplphysiol.00126.2015
  • Tonoli C, Heyman E, Roelands B, et al. BDNF, IGF-I, glucose and insulin during continuous and interval exercise in Type 1 diabetes. Int J Sports Med. 2015;36:955–959. doi: 10.1055/s-0035-1548886
  • Cardoso AM, Bagatini MD, Martins CC, et al. Exercise training prevents ecto-nucleotidases alterations in platelets of hypertensive rats. Mol Cel Biochem. 2012;371:147–156. doi: 10.1007/s11010-012-1431-7
  • Lucas SJ, Cotter JD, Brassard P, et al. High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence. J Cerebr Blood Flow Met. 2015;35:902–911. doi: 10.1038/jcbfm.2015.49
  • Nokia MS, Lensu S, Ahtiainen JP, et al. Physical exercise increases adult hippocampal neurogenesis in male rats provided it is aerobic and sustained. J Physiol. 2016;594:1855–1873. doi: 10.1113/JP271552
  • Skou JC, Esmann M. The Na,K-ATPase. J Bioenerg Biomembr. 1992;24:249–261.
  • Dos Reis EA, de Oliveira LS, Lamers ML, et al. Arginine administration inhibits hippocampal Na(+),K(+)-ATPase activity and impairs retention of an inhibitory avoidance task in rats. Brain Res. 2002;951:151–157. doi: 10.1016/S0006-8993(02)03077-9
  • Moseley AE, Williams MT, Schaefer TL, et al. Deficiency in Na,K-ATPase alpha isoform genes alters spatial learning, motor activity, and anxiety in mice. J Neurosci. 2007;27:616–626. doi: 10.1523/JNEUROSCI.4464-06.2007
  • Crema L, Schlabitz M, Tagliari B, et al. Na+, K+ ATPase activity is reduced in amygdala of rats with chronic stress-induced anxiety-like behaviour. Neurochem Res. 2010;35:1787–1795. doi: 10.1007/s11064-010-0245-9
  • Kirshenbaum GS, Clapcote SJ, Duffy S, et al. Mania-like behaviour induced by genetic dysfunction of the neuron-specific Na+,K+-ATPase alpha3 sodium pump. Proc Nat Acad Sci USA. 2011;108:18144–18149. doi: 10.1073/pnas.1108416108
  • Carvalho FB, Gutierres JM, Bueno A, et al. Anthocyanins control neuroinflammation and consequent memory dysfunction in mice exposed to lipopolysaccharide. Mol Neurobiol. 2016.
  • McCusker RR, Goldberger BA, Cone EJ. Caffeine content of energy drinks, carbonated sodas, and other beverages. J Anal Toxicol. 2006;30:112–114. doi: 10.1093/jat/30.2.112
  • Ribeiro JA, Sebastiao AM. Caffeine and adenosine. JAD. 2010;20:3–15. doi: 10.3233/JAD-2010-1379
  • Abreu RV, Silva-Oliveira EM, Moraes MF, et al. Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains. Pharmacol Biochem Behav. 2011;99:659–664. doi: 10.1016/j.pbb.2011.06.010
  • Schmatz R, Mann TR, Spanevello R, et al. Moderate red wine and grape juice consumption modulates the hydrolysis of the adenine nucleotides and decreases platelet aggregation in streptozotocin-induced diabetic rats. Cell Biochem Biophys. 2013;65:129–143. doi: 10.1007/s12013-012-9407-5
  • Fletcher DK, Bishop NC. Effect of a high and low dose of caffeine on antigen-stimulated activation of human natural killer cells after prolonged cycling. Int J Sport Nutr Exer Metabol. 2011;21:155–165. doi: 10.1123/ijsnem.21.2.155
  • Dall'Igna OP, Porciuncula LO, Souza DO, et al. Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity. Br J Pharmacol. 2003;138:1207–1209. doi: 10.1038/sj.bjp.0705185
  • Chen JF, Xu K, Petzer JP, et al. Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci. 2001;21: RC143.
  • Evans SM, Pinto Pereira LM, Addae JI. Neuroprotection by caffeine and pentoxifylline during experimental cerebral ischaemia. West Indian Med J. 1999;48:23–25.
  • Dodd SL, Herb RA, Powers SK. Caffeine and exercise performance. An update. Sports Med. 1993;15:14–23. doi: 10.2165/00007256-199315010-00003
  • Graham TE, Spriet LL. Performance and metabolic responses to a high caffeine dose during prolonged exercise. J Appl Physiol. 1991;71:2292–2298.
  • Graham TE, Hibbert E, Sathasivam P. Metabolic and exercise endurance effects of coffee and caffeine ingestion. J Appl Physiol. 1998;85:883–889.
  • Greer F, McLean C, Graham TE. Caffeine, performance, and metabolism during repeated Wingate exercise tests. J Appl Physiol. 1998;85:1502–1508.
  • Spriet LL, MacLean DA, Dyck DJ, et al. Caffeine ingestion and muscle metabolism during prolonged exercise in humans. Am J Physiol. 1992;262.
  • Davis JM, Zhao Z, Stock HS, et al. Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integ Comp Physiol. 2003;284:399–404. doi: 10.1152/ajpregu.00386.2002
  • Bracco D, Ferrarra JM, Arnaud MJ, et al. Effects of caffeine on energy metabolism, heart rate, and methylxanthine metabolism in lean and obese women. Am J Physiol. 1995;269:671–678.
  • Fredholm BB, Battig K, Holmen J, et al. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51:83–133.
  • Gobatto CA, de Mello MA, Sibuya CY, et al. Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol A Mol Integr Physiol. 2001;130:21–27. doi: 10.1016/S1095-6433(01)00362-2
  • De Araujo GG, Papoti M, Manchado Fde B, et al. Protocols for hyperlactatemia induction in the lactate minimum test adapted to swimming rats. Comp Biochem Physiol A Mol Integr Physiol. 2007;148:888–892. doi: 10.1016/j.cbpa.2007.09.002
  • Koshinaka K, Sano A, Howlett KF, et al. Effect of high-intensity intermittent swimming on postexercise insulin sensitivity in rat epitrochlearis muscle. Metab Clin Exp. 2008;57:749–756. doi: 10.1016/j.metabol.2008.01.014
  • Gutierres JM, Carvalho FB, Schetinger MR, et al. Anthocyanins restore behavioural and biochemical changes caused by streptozotocin-induced sporadic dementia of Alzheimer’s type. Life Sci. 2014;96:7–17. doi: 10.1016/j.lfs.2013.11.014
  • Gutierres JM, Carvalho FB, Rosa MM, et al. Protective effect of α-tocopherol on memory deficits and Na+,K+-ATPase and acetylcholinesterase activities in rats with diet-induced hypercholesterolemia. Biomed Aging Pathol. 2012;2:73–80. doi: 10.1016/j.biomag.2012.03.004
  • Gutierres JM, Kaizer RR, Schmatz R, et al. alpha-Tocopherol regulates ectonucleotidase activities in synaptosomes from rats fed a high-fat diet. Cell Biochem Funct. 2012;30:286–292. doi: 10.1002/cbf.2797
  • Carvalho FB, Mello CF, Marisco PC, et al. Spermidine decreases Na(+),K(+)-ATPase activity through NMDA receptor and protein kinase G activation in the hippocampus of rats. Eur J Pharmacol. 2012;684:79–86. doi: 10.1016/j.ejphar.2012.03.046
  • Carvalho FB, Gutierres JM, Bohnert C, et al. Anthocyanins suppress the secretion of proinflammatory mediators and oxidative stress, and restore ion pump activities in demyelination. J Nutr Biochem. 2015;26:378–390. doi: 10.1016/j.jnutbio.2014.11.006
  • Fiske CH, Subbarow Y. The nature of the “inorganic phosphate” in voluntary muscle. Science. 1927;65:401–403. doi: 10.1126/science.65.1686.401
  • Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–3175.
  • Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/S0076-6879(84)05016-3
  • Furian AF, Oliveira MS, Royes LF, et al. GM1 ganglioside induces vasodilation and increases catalase content in the brain. Free Rad Biol Med. 2007;43:924–932. doi: 10.1016/j.freeradbiomed.2007.05.035
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–77. Epub 1959/05/01. doi: 10.1016/0003-9861(59)90090-6
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3
  • Rossato JI, Zeni G, Mello CF, et al. Ebselen blocks the quinolinic acid-induced production of thiobarbituric acid reactive species but does not prevent the behavioural alterations produced by intra-striatal quinolinic acid administration in the rat. Neurosci Lett. 2002;318:137–140. doi: 10.1016/S0304-3940(01)02504-6
  • Castaneda AE, Tuulio-Henriksson A, Marttunen M, et al. A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. J Affect Disorders. 2008;106:1–27. doi: 10.1016/j.jad.2007.06.006
  • Zanini D, Schmatz R, Pimentel VC, et al. Lung cancer alters the hydrolysis of nucleotides and nucleosides in platelets. Biomed Pharmacother. 2012;66:40–45. doi: 10.1016/j.biopha.2011.09.003
  • Rogers J, Vo U, Buret LS, et al. Dissociating the therapeutic effects of environmental enrichment and exercise in a mouse model of anxiety with cognitive impairment. Transcult Psychiatry. 2016;6:e794. doi: 10.1038/tp.2016.52
  • Hallgren M, Herring MP, Owen N, et al. Exercise, physical activity, and sedentary behavior in the treatment of depression: broadening the scientific perspectives and clinical opportunities. Front Psychiatry. 2016;7:36. doi: 10.3389/fpsyt.2016.00036
  • Hughes RN, Hancock NJ, Henwood GA, et al. Evidence for anxiolytic effects of acute caffeine on anxiety-related behaviour in male and female rats tested with and without bright light. Behav Brain Res. 2014;271:7–15. doi: 10.1016/j.bbr.2014.05.038
  • Park KS, Oh JH, Yoo HS, et al. (-)-Epigallocatechin-3-O-gallate (EGCG) reverses caffeine-induced anxiogenic-like effects. Neurosci Lett. 2010;481:131–134. doi: 10.1016/j.neulet.2010.06.072
  • Stefanello N, Schmatz R, Pereira LB, et al. Effects of chlorogenic acid, caffeine, and coffee on behavioural and biochemical parameters of diabetic rats. Mol Cel Biochem. 2014;388:277–286. doi: 10.1007/s11010-013-1919-9
  • Zhang LN, Sun YJ, Pan S, et al. Na(+)-K(+)-ATPase, a potent neuroprotective modulator against Alzheimer disease. Fundam Clin Pharmacol. 2013;27:96–103. doi: 10.1111/fcp.12000
  • Silveira PP, Portella AK, Benetti Cda S, et al. Association between Na(+),K(+)-ATPase activity and the vulnerability/resilience to mood disorders induced by early life experience. Neurochem Res. 2011;36:2075–2082. doi: 10.1007/s11064-011-0531-1
  • Gamaro GD, Streck EL, Matte C, et al. Reduction of hippocampal Na+, K+-ATPase activity in rats subjected to an experimental model of depression. Neurochem Res. 2003;28:1339–1344. doi: 10.1023/A:1024988113978
  • Riegel RE, Valvassori SS, Elias G, et al. Animal model of mania induced by ouabain: evidence of oxidative stress in submitochondrial particles of the rat brain. Neurochem Int. 2009;55:491–495. doi: 10.1016/j.neuint.2009.05.003
  • Schaefer TL, Lingrel JB, Moseley AE, et al. Targeted mutations in the Na, K-ATPase alpha 2 isoform confer ouabain resistance and result in abnormal behaviour in mice. Synapse. 2011;65:520–531. doi: 10.1002/syn.20870
  • Panza F, Solfrizzi V, Barulli MR, et al. Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: a systematic review. J Nutr Health Aging. 2015;19:313–328. doi: 10.1007/s12603-014-0563-8
  • Chen JF. Adenosine receptor control of cognition in normal and disease. Int Rev Neurobiol. 2014;119:257–307. doi: 10.1016/B978-0-12-801022-8.00012-X
  • Basurto-Islas G, Blanchard J, Tung YC, et al. Therapeutic benefits of a component of coffee in a rat model of Alzheimer’s disease. Neurobiol Aging. 2014;35:2701–2712. doi: 10.1016/j.neurobiolaging.2014.06.012
  • Behan WM, Stone TW. Enhanced neuronal damage by co-administration of quinolinic acid and free radicals, and protection by adenosine A2A receptor antagonists. Br J Pharmacol. 2002;135:1435–1442. doi: 10.1038/sj.bjp.0704613
  • Leite MR, Wilhelm EA, Jesse CR, et al. Protective effect of caffeine and a selective A2A receptor antagonist on impairment of memory and oxidative stress of aged rats. Exp Gerontol. 2011;46:309–315. doi: 10.1016/j.exger.2010.11.034
  • Afzalpour ME, Chadorneshin HT, Foadoddini M, et al. Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain. Physiol Behav. 2015;147:78–83. doi: 10.1016/j.physbeh.2015.04.012
  • De Almeida AA, Gomes da Silva S, Fernandes J, et al. Differential effects of exercise intensities in hippocampal BDNF, inflammatory cytokines and cell proliferation in rats during the postnatal brain development. Neurosci Lett. 2013;553:1–6. doi: 10.1016/j.neulet.2013.08.015
  • Kuo A, Smith MT. Theoretical and practical applications of the intracerebroventricular route for CSF sampling and drug administration in CNS drug discovery research: a mini review. J Neurosci Methods. 2014;233:166–171. doi: 10.1016/j.jneumeth.2014.06.006
  • Hassoun EA, Al-Ghafri M, Abushaban A. The role of antioxidant enzymes in TCDD-induced oxidative stress in various brain regions of rats after subchronic exposure. Free Rad Biol Med. 2003;35:1028–1036. doi: 10.1016/S0891-5849(03)00458-1
  • Brannan TS, Maker HS, Raes I, et al. Regional distribution of glutathione reductase in the adult rat brain. Brain Res. 1980;200:474–477. doi: 10.1016/0006-8993(80)90936-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.