Publication Cover
Redox Report
Communications in Free Radical Research
Volume 22, 2017 - Issue 6
1,185
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Markers of oxidative/nitrative damage of plasma proteins correlated with EDSS and BDI scores in patients with secondary progressive multiple sclerosis

, , , &

References

  • Fitzner D, Simons M. Chronic progressive multiple sclerosis – pathogenesis of neurodegeneration and therapeutic strategies. Curr Neuropharmacol. 2010;8(3):305–315. doi: 10.2174/157015910792246218
  • Lassmann H, van Horssen J. The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett. 2011;585:3715–3723. doi: 10.1016/j.febslet.2011.08.004
  • Miljković D, Spasojević I. Multiple sclerosis: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2013;19(18):2286–2334. doi: 10.1089/ars.2012.5068
  • Miller E. Multiple sclerosis. Adv Exp Med Biol. 2012;724:222–238. doi: 10.1007/978-1-4614-0653-2_17
  • Lublin FD. New multiple sclerosis phenotypic classification. Eur Neurol. 2014;72:1–5. doi: 10.1159/000367614
  • Miller E. Multiple sclerosis. In: Ahmad SI, editor. Neurodegenerative diseases. Springer Lands Bioscience; 2011.
  • Jongen PJ, Heerings M, Lemmens WA, et al. A prospective web-based patient-centred interactive study of long-term disabilities, disabilities perception and health-related quality of life in patients with multiple sclerosis in The Netherlands: the Dutch Multiple Sclerosis Study protocol. BMC Neurol. 2015;15:1. doi: 10.1186/s12883-015-0379-0
  • Gandhi R, Laroni A, Weiner HL. Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol. 2010;221(1–2):7–14. doi: 10.1016/j.jneuroim.2009.10.015
  • Wu GF, Alvarez E. The immuno-pathophysiology of multiple sclerosis. Neurol Clin. 2011;2:257–278. doi: 10.1016/j.ncl.2010.12.009
  • Desai RA, Davies AL, Tachrount M, et al. Cause and prevention of demyelination in a model multiple sclerosis lesion. Ann Neurol. 2016;79(4):591–604. doi: 10.1002/ana.24607
  • Najafi S, Mirshafiey A. The effect of activated microglia in progression of multiple sclerosis. Int Trends Immun. 2015;4:96–104.
  • Gironi M, Borgiani B, Mariani E, et al. Oxidative stress is differentially present in multiple sclerosis courses, early evident, and unrelated to treatment. J Immunol Res. 2014;2014:1–9. doi: 10.1155/2014/961863
  • Karlík M, Valkovič P, Hančinová V, et al. Markers of oxidative stress in plasma and saliva in patients with multiple sclerosis. Clin Biochem. 2015;48(1–2):24–28. doi: 10.1016/j.clinbiochem.2014.09.023
  • Haider L, Fischer MT, Frischer JM, et al. Oxidative damage in multiple sclerosis lesions. Brain. 2011;134(7):1914–1924. doi: 10.1093/brain/awr128
  • Miller E, Walczak A, Saluk J, et al. Oxidative modification of patient's plasma proteins and its role in pathogenesis of multiple sclerosis. Clin Biochem. 2012;45(1–2):26–30. doi: 10.1016/j.clinbiochem.2011.09.021
  • Miller E, Wachowicz B, Majsterek I. Advances in antioxidative therapy of multiple sclerosis. Curr Med Chem. 2013;20(37):4720–4730. doi: 10.2174/09298673113209990156
  • Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol. 2004;3:261–268.
  • Popa-Wagner A, Mitran S, Sivanesan S, et al. ROS and brain diseases: the good, the bad, and the ugly. Oxid Med Cell Longev. 2013;2013:1–14. doi: 10.1155/2013/963520
  • Gutowicz M. The influence of reactive oxygen species on the central nervous system. Postep Hig Med Dos. 2011;65:104–113. doi: 10.5604/17322693.933486
  • Singh N, Haldar S, Tripathi AK, et al. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal. 2014;20(8):1324–1363. doi: 10.1089/ars.2012.4931
  • Jiang S, Wu J, Yang Y, et al. Proteomic analysis of the cerebrospinal fluid in multiple sclerosis and neuromyelitis optica patients. Mol Med Rep. 2012;5:1081–1086.
  • Pavelek B, Vyšata O, Tambor V, et al. Proteomic analysis of cerebrospinal fluid for relapsing-remitting multiple sclerosis and clinically isolated syndrome. Biomed Rep. 2016;1:35–40.
  • Teunissen CE, Koel-Simmelink MJ, Pham TV, et al. Identification of biomarkers for diagnosis and progression of MS by MALDI-TOF mass spectrometry. Mult Scler J. 2011;17(7):838–850. doi: 10.1177/1352458511399614
  • Podbielska M, Levery SB, Hogan EL. The structural and functional role of myelin fast-migrating cerebrosides: pathological importance in multiple sclerosis. Clin Lipidol. 2011;6(2):159–179. doi: 10.2217/clp.11.8
  • Rommer PS, Greilberger J, Salhofer-Polanyi S, et al. Elevated levels of carbonyl proteins in cerebrospinal fluid of patients with neurodegenerative diseases. Tohoku J Exp Med. 2014;234(4):313–317. doi: 10.1620/tjem.234.313
  • Adamczyk B, Adamczyk-Sowa M. New iinsights into the role of oxidative stress mechanisms in the pathophysiology and treatment of multiple sclerosis. Oxid Med Cell Longev. 2016;2016:1–18. doi: 10.1155/2016/1973834
  • Palmer AM. Multiple sclerosis and the blood-central nervous system barrier. Cardiovasc Psychiatry Neurol. 2013;2013:1–10. doi: 10.1155/2013/530356
  • Hernández-Pedro NY, Espinosa-Ramirez G, de la Cruz VP, et al. Initial immunopathogenesis of multiple sclerosis: innate immune response. Clin Dev Immunol. 2013;2013:1–15. doi: 10.1155/2013/413465
  • Frijhoff J, Winyard PG, Zarkovic N, et al. Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal. 2015;23(14):1144–1170. doi: 10.1089/ars.2015.6317
  • Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302. doi: 10.1002/ana.22366
  • Lubin FD, Reingold SC. Defining the clinical course of multiple sclerosis results of an international survey. National Multiple Sclerosis Society USA Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology. 1996;46(4):907–911. doi: 10.1212/WNL.46.4.907
  • Beck AT, Epstein N, Brown G, et al. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol. 1988;56(6):893–897. doi: 10.1037/0022-006X.56.6.893
  • Buss H, Chan TP, Sluis KB, et al. Protein carbonyl measurement by a sensitive ELISA method. Free Rad Biol Med. 1997;23(3):361–366. doi: 10.1016/S0891-5849(97)00104-4
  • Alamdari DH, Kostidou E, Paletas K, et al. High sensitivity enzyme-linked immunosorbent assay (ELISA) method for measuring protein carbonyl in samples with low amounts of protein. Free Radic Biol Med. 2005;39(10):1362–1367. doi: 10.1016/j.freeradbiomed.2005.06.023
  • Levine RL, Garland D, Oliver CN, et al. Determination of carbonyl content in oxidatively modified proteins. Method Enzymol. 1990;186:464–478. doi: 10.1016/0076-6879(90)86141-H
  • Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyldialdehyde) in biochemical systems. Anal Biochem. 1966;16(2):359–364. doi: 10.1016/0003-2697(66)90167-9
  • Khan J, Brennan DM, Bradley N, et al. 3-nitrotyrosine in the proteins of human plasma determined by an Elisa method. Biochem J. 1998;330(2):795–801. doi: 10.1042/bj3300795
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6
  • Hu ML. Measurement of protein thiol groups and glutathione in plasma. Method Enzymol. 1994;233:380–385. doi: 10.1016/S0076-6879(94)33044-1
  • Koster JF, Biemond P, Swaak AJ. Intracellular and extracellular sulphydryl levels in rheumatoid arthritis. Ann Rheum Dis. 1986;45(1):44–46. doi: 10.1136/ard.45.1.44
  • Hauke J, Kossowski T. Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaest Geogr. 2011;2:87–93.
  • Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. 2008;31:247–269. doi: 10.1146/annurev.neuro.30.051606.094313
  • Koch M, Ramsaransing GS, Arutjunyan AV, et al. Oxidative stress in serum and peripheral blood leukocytes in patients with different disease courses of multiple sclerosis. J Neurol. 2006;253(4):483–487. doi: 10.1007/s00415-005-0037-3
  • Stoop MP, Singh V, Dekker LJ, et al. Proteomics comparison of cerebrospinal fluid of relapsing remitting and primary progressive multiple sclerosis. PLoS One. 2010;5(8):e12442. doi: 10.1371/journal.pone.0012442
  • Lukáč Š, Kalnovičová T, Muchová J. Evaluation of oxidative and nitrosative stress in relapsing remitting multiple sclerosis. Health. 2013;05(11):1924–1928. doi: 10.4236/health.2013.511260
  • Miller E, Mrowicka M, Malinowska K, et al. Effects of whole-body cryotherapy on a total antioxidative status and activities of antioxidative enzymes in blood of depressive multiple sclerosis patients. World J Biol Psychiatry. 2011;12(3):223–227. doi: 10.3109/15622975.2010.518626
  • Miller E, Mrowicka M, Malinowska K, et al. The effects of whole-body cryotherapy and melatonin supplementation on total antioxidative status and some antioxidative enzymes in multiple sclerosis patients. Pol Merkur Lekarski. 2011;31(183):150–153.
  • Fiorini A, Koudriavtseva T, Bucaj E, et al. Involvement of oxidative stress in occurrence of relapses in multiple sclerosis: the spectrum of oxidatively modified serum proteins detected by proteomics and redox proteomics analysis. PLoS One. 2013;8(6):e65184. doi: 10.1371/journal.pone.0065184
  • Mao P, Reddy PH. Is multiple sclerosis a mitochondrial disease? Biochim Biophys Acta. 2010;1802(1):66–79. doi: 10.1016/j.bbadis.2009.07.002
  • Morel A, Bijak M, Miller E, et al. Relationship between the increased haemostatic properties of blood platelets and oxidative stress level in multiple sclerosis patients with the secondary progressive stage. Oxid Med Cell Longev. 2015;2015:1–10. doi: 10.1155/2015/240918
  • Tseng CH, Huang WS, Lin CL, et al. Increased risk of ischaemic stroke among patients with multiple sclerosis. Eur J Neurol. 2015;22:500–506. doi: 10.1111/ene.12598
  • Liu S, Bai S, Qin Z, et al. Quantitative proteomic analysis of the cerebrospinal fluid of patients with multiple sclerosis. J Cell Mol Med. 2009;13:1586–1603. doi: 10.1111/j.1582-4934.2009.00850.x
  • Ottervald J, Franzén B, Nilsson K, et al. Multiple sclerosis: identification and clinical evaluation of novel CSF biomarkers. J Proteomics. 2010;73(6):1117–1132. doi: 10.1016/j.jprot.2010.01.004
  • Mancall EL, Brock DG. Clinical nauroanatomy. The anatomic basis for clinical neuroscience. Philadelphia; 2011: p. 1–11.
  • Cristalli DO, Arnal N, Marra FA, et al. Peripheral markers in neurodegenerative patients and their first-degree relatives. J Neurol Sci. 2012;314(1–2):48–56. doi: 10.1016/j.jns.2011.11.001
  • Sinem F, Dildar K, Gökhan E, et al. The serum protein and lipid oxidation marker levels in Alzheimer’s disease and effects of cholinesterase inhibitors and antipsychotic drugs therapy. Curr Alzheimer Res. 2010;7(5):463–469. doi: 10.2174/156720510791383822
  • Torres LL, Quaglio NB, De Souza GT, et al. Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis. 2011;26(1):59–68.
  • Nikolova GD, Grigorov BG, Zheleva AM, et al. Influence of therapy on some important final products of oxidation of lipids, proteins and nucleic acids in patients with Parkinson’s Diseases. Biol Chem. 2014;4:253–260.
  • Olas B, Wachowicz B. Role of reactive nitrogen species in blood platelet functions. Platelets. 2007;18(8):555–565. doi: 10.1080/09537100701504087
  • Bolton C, Wood EG, Scott GS, et al. A comparative evaluation of the response to peroxynitrite by a brain endothelial cell line and control of the effects by drug targeting. Cell Mol Neurobiol. 2009;29(5):707–717. doi: 10.1007/s10571-009-9391-5
  • Wachowicz B. Blood platelets as a peripheral cell in oxidative stress in psychiatric disorders. In: Dietrich-Muszalska A, Chauhan V, Grignon S, editors. Studies on psychiatric disorders. New York (NJ): 2015. p. 327–353.
  • Yuceyar N, Taşkiran D, Sağduyu A. Serum and cerebrospinal fluid nitrite and nitrate levels in relapsing-remitting and secondary progressive multiple sclerosis patients. Clin Neurol Neurosurg. 2001;103(4):206–211. doi: 10.1016/S0303-8467(01)00144-5
  • Wang P, Xie K, Wang C, et al. Oxidative stress induced by lipid peroxidation is related with inflammation of demyelination and neurodegeneration in multiple sclerosis. Eur Neurol. 2014;72(3-4):249–254. doi: 10.1159/000363515
  • Koch M, Mostert J, Arutjunyan AV, et al. Plasma lipid peroxidation and progression of disability in multiple sclerosis. Eur J Neurol. 2007;14(5):529–533. doi: 10.1111/j.1468-1331.2007.01739.x
  • Hadžović-Džuvo A, Lepara O, Valjevac A, et al. Serum total antioxidant capacity in patients with multiple sclerosis. Bosn J Basic Med Sci. 2011;11(1):33–36.
  • Oliveira SR, Kallaur AP, Simão AN, et al. Oxidative stress in multiple sclerosis patients in clinical remission: association with the expanded disability status scale. J Neurol Sci. 2012;321(1–2):49–53. doi: 10.1016/j.jns.2012.07.045

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.