Publication Cover
Redox Report
Communications in Free Radical Research
Volume 23, 2018 - Issue 1
22,463
Views
41
CrossRef citations to date
0
Altmetric
Review Articles

Spectrophotometric assays for measuring redox biomarkers in blood and tissues: the NADPH network

, ORCID Icon, , ORCID Icon &

References

  • Agledal L, Niere M, Ziegler M. The phosphate makes a difference: cellular functions of NADP. Redox Rep. 2010;15(1):2–10. doi: 10.1179/174329210X12650506623122
  • Berger F, Ramírez-Hernández MH, Ziegler M. The new life of a centenarian: signalling functions of NAD(P). Trends Biochem Sci. 2004;29(3):111–118. doi: 10.1016/j.tibs.2004.01.007
  • Cantó C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015;22(1):31–53. doi: 10.1016/j.cmet.2015.05.023
  • Pollak N, Dölle C, Ziegler M. The power to reduce: pyridine nucleotides – small molecules with a multitude of functions. Biochem J. 2007a;402(2):205–218. doi: 10.1042/BJ20061638
  • Nikiforov A, Kulikova V, Ziegler M. The human NAD metabolome: functions, metabolism and compartmentalization. Crit Rev Biochem Mol Biol. 2015;50(4):284–297. doi: 10.3109/10409238.2015.1028612
  • Lin SJ, Guarente L. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol. 2003;15(2):241–246. doi: 10.1016/S0955-0674(03)00006-1
  • Liou GG, Tanny JC, Kruger RG, et al. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. Cell. 2005;121(4):515–527. doi: 10.1016/j.cell.2005.03.035
  • Grose JH, Joss L, Velick SF, et al. Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc Natl Acad Sci USA. 2006;103(20):7601–7606. doi: 10.1073/pnas.0602494103
  • Anderson RM, Bitterman KJ, Wood JG, et al. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature. 2003;423(6936):181–185. doi: 10.1038/nature01578
  • Kourtzidis IA, Stoupas AT, Gioris IS, et al. The NAD(+) precursor nicotinamide riboside decreases exercise performance in rats. J Int Soc Sports Nutr. 2016;2(13):32. doi: 10.1186/s12970-016-0143-x
  • Aon MA, Stanley BA, Sivakumaran V, et al. Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study. J Gen Physiol. 2012;139(6):479–491. doi: 10.1085/jgp.201210772
  • Kirkman HN, Rolfo M, Ferraris AM, et al. Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem. 1999;274(20):13908–13914. doi: 10.1074/jbc.274.20.13908
  • Winterbourn CC. The biological chemistry of hydrogen peroxide. Methods Enzymol. 2013;528:3–25. doi: 10.1016/B978-0-12-405881-1.00001-X
  • Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss–Handler independent route to NAD+ in fungi and humans. Cell. 2004;117:495–502. doi: 10.1016/S0092-8674(04)00416-7
  • Veskoukis AS, Kyparos A, Paschalis V, et al. Spectrophotometric assays for measuring redox biomarkers in blood. Biomarkers. 2016a;21(3):208–217. doi: 10.3109/1354750X.2015.1126648
  • Viña J, Saez GT, Gambini J, et al. Role of NAD(+)/NADH redox ratio in cell metabolism: a tribute to Helmut Sies and Theodor Bücher and Hans A. Krebs. Arch Biochem Biophys. 2016;595:176–180. doi: 10.1016/j.abb.2015.11.027
  • Margaritelis NV, Cobley JN, Paschalis V, et al. Going retro: oxidative stress biomarkers in modern redox biology. Free Radic Biol Med. 2016;98:2–12. doi: 10.1016/j.freeradbiomed.2016.02.005
  • Veskoukis AS, Nikolaidis MG, Kyparos A, et al. Blood reflects tissue oxidative stress depending on biomarker and tissue studied. Free Radic Biol Med. 2009;47(10):1371–1374. doi: 10.1016/j.freeradbiomed.2009.07.014
  • Margaritelis NV, Veskoukis AS, Paschalis V, et al. Blood reflects tissue oxidative stress: a systematic review. Biomarkers. 2015;20(2):97–108. doi: 10.3109/1354750X.2014.1002807
  • Wagner TC, Scott MD. Single extraction method for the spectrophotometric quantification of oxidized and reduced pyridine nucleotides in erythrocytes. Anal Biochem. 1994;222(2):417–426. doi: 10.1006/abio.1994.1511
  • Outten CE, Culotta VC. A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO J. 2003;22(9):2015–2024. doi: 10.1093/emboj/cdg211
  • Pollak N, Niere M, Ziegler M. NAD kinase levels control the NADPH concentration in human cells. J Biol Chem. 2007b;282(46):33562–33571. doi: 10.1074/jbc.M704442200
  • Someya A, Nishijima K, Nunoi H, et al. Study on the superoxide-producing enzyme of eosinophils and neutrophils-comparison of the NADPH oxidase components. Arch Biochem Biophys. 1997;345:207–213. doi: 10.1006/abbi.1997.0252
  • Hua J, Hasebe T, Someya A, et al. Evaluation of the expression of NADPH oxidase components during maturation of HL-60 cells to neutrophil lineage. J Leukoc Biol. 2000;68(2):216–224.
  • Nelson KJ, Parsonage D. Measurement of peroxiredoxin activity. Curr Protoc Toxicol. Chapter 7:Unit7. 2011;10:1–33.
  • Kumar S, Holmgren A. Induction of thioredoxin, thioredoxin reductase and glutaredoxin activity in mouse skin by TPA, a calcium ionophore and other tumor promoters. Carcinogenesis. 1999;20(9):1761–1767. doi: 10.1093/carcin/20.9.1761
  • Abdelkawy KS, Salem KA. Simple method for measuring endothelial nitric oxide synthase activity in clinical researches. J App Pharm Sci. 2015;5(Suppl. 3):084–090.
  • Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008;10(2):179–206. doi: 10.1089/ars.2007.1672
  • Warburg O, Christian W, Griese A. Hydrogen-transferring coenzyme, its composition and mode of action. Biochem Z. 1935;282:157.
  • Kaplan NO, Colowick SP, Barnes CC. Effect of alkali on diphosphopyridine nucleotide. J Biol Chem. 1951;191:461–472.
  • Passonneau JV, Lowry OH. Enzymatic analysis. A practical guide. Totowa, NJ: Humana Press; 1993.
  • Burch HB, Bradley ME, Lowry OH. The measurement of triphosphopyridine nucleotide and the role of hemoglobin in producing erroneous triphosphopyridine nucleotide values. J Biol Chem. 1967;242:4546–4554.
  • Negelein E, Haas E. Uber die Wirkungweise des Zwischenferments. Biochem Z. 1935;282:206–220.
  • Greengard P. Determination of intermediary metabolites by enzymic fluorimetry. Nature (London). 1956;178:632–643. doi: 10.1038/178632a0
  • Lowry OH, Roberts NR, Kapphahn JI. The fluorometric measurement of pyridine nucleotides. J Biol Chem. 1957;224:1047–1064.
  • Lowry OH, Passonneau JV, Rock MK. The stability of pyridine nucleotides. J Biol Chem. 1961;236:2756–2759.
  • Passonneau JV, Gatfield PD, Schulz DW, et al. An enzymic method for measurement of glycogen. Anal Biochem. 1967;19:315–326. doi: 10.1016/0003-2697(67)90167-4
  • Howse DC, Duffy TE. Control of the redox state of the pyridine nucleotides in the rat cerebral cortex. Effect of electroshock-induced seizures. J Neurochem. 1975;24(5):935–940. doi: 10.1111/j.1471-4159.1975.tb03658.x
  • Duffy TE, Howse DC, Plum F. Cerebral energy metabolism during experimental status epilepticus. J Neurochem. 1975;24(5):925–934. doi: 10.1111/j.1471-4159.1975.tb03657.x
  • Hindfelt B, Plum F, Duffy TE. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest. 1977;59(3):386–396. doi: 10.1172/JCI108651
  • Williamson JR, Corkey BE. Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods. Methods Enzymol. 1969;13:454–513.
  • Tischler ME, Hecht P, Williamson JR. Effect of ammonia on mitochondrial and cytosolic NADH and NADPH systems in isolated rat liver cells. FEBS Lett. 1977;76(1):99–104. doi: 10.1016/0014-5793(77)80129-4
  • LaNoue KF, Watts JA, Koch CD. Adenine nucleotide transport during cardiac ischemia. Am J Physiol. 1981;241(5):H663–H671.
  • Ola MS, Berkich DA, Xu Y, et al. Analysis of glucose metabolism in diabetic rat retinas. Am J Physiol Endocrinol Metab. 2006;290(6):E1057–E1067. doi: 10.1152/ajpendo.00323.2005
  • Panday A, Sahoo MK, Osorio D, et al. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12(1):5–23. doi: 10.1038/cmi.2014.89
  • Andersson U, Leighton B, Young ME, et al. Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and/or nitric oxide. Biochem Biophys Res Commun. 1998;249(2):512–516. doi: 10.1006/bbrc.1998.9171
  • Hwang NR, Yim SH, Kim YM, et al. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. Biochem J. 2009;423(2):253–264. doi: 10.1042/BJ20090854
  • Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313. doi: 10.1152/physrev.00044.2005
  • Quinn MT, Ammons MC, Deleo FR. The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction. Clin Sci (Lond). 2006;111(1):1–20. doi: 10.1042/CS20060059
  • Hall A, Nelson KJ, Poole LB, et al. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid Redox Signal. 2010;402:194–209.
  • Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4:278–286. doi: 10.1038/nchembio.85
  • Rhee S, Chae H, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signalling. Free Radic Biol Med. 2005;38(12):1543–1552. doi: 10.1016/j.freeradbiomed.2005.02.026
  • Rhee SG, Woo HA, Kil IS, et al. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J Biol Chem. 2012;287(7):4403–4410. doi: 10.1074/jbc.R111.283432
  • Arnér ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267(20):6102–6109. doi: 10.1046/j.1432-1327.2000.01701.x
  • Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem. 1989;264(24):13963–13966.
  • Nordberg J, Arnér ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001;31(11):1287–1312. doi: 10.1016/S0891-5849(01)00724-9
  • Mustacich D, Powis G. Thioredoxin reductase. Biochem J. 2000;346(Pt 1):1–8. doi: 10.1042/bj3460001
  • Yoshida T, Nakamura H, Masutani H, et al. The involvement of thioredoxin and thioredoxin binding protein-2 on cellular proliferation and aging process. Ann N Y Acad Sci. 2005;1055:1–12. doi: 10.1196/annals.1323.002
  • Fernando MR, Nanri H, Yoshitake S, et al. Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells. Eur J Biochem. 1992;209(3):917–922. doi: 10.1111/j.1432-1033.1992.tb17363.x
  • Hirt RP, Müller S, Embley TM, et al. The diversity and evolution of thioredoxin reductase: new perspectives. Trends Parasitol. 2002;18(7):302–308. doi: 10.1016/S1471-4922(02)02293-6
  • Holmgren A, Björnstedt M. Methods in enzymology. Methods Enzymol. 1995;252:199–208. doi: 10.1016/0076-6879(95)52023-6
  • Meyer Y, Buchanan BB, Vignols F, et al. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Gen. 2009;43(2009):335–367. doi: 10.1146/annurev-genet-102108-134201
  • Lillig CH, Holmgren A. Thioredoxin and related molecules – from biology to health and disease. Antioxid Redox Signal. 2007;9(1):25–47. doi: 10.1089/ars.2007.9.25
  • Knowles R, Moncada S. Nitric oxide synthases in mammals. The Biochem J. 1994;298:249–258. doi: 10.1042/bj2980249
  • Moncada S, Higgs E. Nitric oxide and the vascular endothelium. Handb Exp Pharmacol. 2006;176:213–254. doi: 10.1007/3-540-32967-6_7
  • Veskoukis AS, Goutianos G, Paschalis P, et al. The rat closely mimics oxidative stress and inflammation in humans after exercise but not after exercise combined with vitamin C administration. Eur J Appl Physiol. 2016b;116(4):791–804. doi: 10.1007/s00421-016-3336-8