Publication Cover
Redox Report
Communications in Free Radical Research
Volume 24, 2019 - Issue 1
1,735
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Protection of cholinergic and antioxidant system contributes to the effect of Vitamin D3 ameliorating memory dysfunction in sporadic dementia of Alzheimer’s type

ORCID Icon, , ORCID Icon, ORCID Icon, , , , , & show all

References

  • Kuljiš RO. Integrative understanding of emergent brain properties, quantum brain hypotheses, and connectome alterations in dementia are key challenges to conquer Alzheimer's disease. Front Neur. 2010;19:1–15.
  • Bachurin SO. Medicinal chemistry approaches for the treatment and prevention of Alzheimer’s disease. Med Res Rev. 2003;23:48–88. doi: 10.1002/med.10026
  • Corrada MM, Brookmeyer R, Berlau D, et al. Prevalence of dementia after age 90: results from the 90+ study. Neur. 2008;71:337–343.
  • Corrada MM, Brookmeyer R, Paganini-Hill A, et al. Dementia incidence continues to increase with age in the oldest old: the 90+ study. Annals Neur. 2010;67:114–121. doi: 10.1002/ana.21915
  • Gutierres JM, Carvalho FB, Schetinger MRC, et al. Anthocyanins restore behavioral and biochemical changes caused by streptozotocin-induced sporadic dementia of Alzheimer’s type. Life Science. 2014;96:7–17. doi: 10.1016/j.lfs.2013.11.014
  • Awasthi H, Tota S, Hanif K, et al. Protective effect of curcumin against intracerebral streptozotocin induced impairment in memory and cerebral blood flow. Life Scienc. 2010;86:87–94. doi: 10.1016/j.lfs.2009.11.007
  • Talesa NV. Acetylcholinesterase in Alzheimer’s disease. Mech Aging Dev. 2011;122:65–75.
  • Mazzanti CM, Spanevello R, Ahmed M, et al. Cyclosporine a inhibits acetylcholinesterase activity in rats experimentally demyelinated with ethidium bromide. Int J Dev Neur. 2007;25:259–264. doi: 10.1016/j.ijdevneu.2007.02.005
  • Paleari L, Grozio A, Cesario A, et al. The cholinergic system and cancer. Sem Cancer Biol. 2008;18:211–217. doi: 10.1016/j.semcancer.2007.12.009
  • Cantuti-Castelvetri I, Shukitt-Hale B, Joseph JA. Neurobehavioral aspects of antioxidants in aging. Int J Dev Neur. 2000;18:367–381. doi: 10.1016/S0736-5748(00)00008-3
  • McIntosh LJ, Trush MA, Troncoso JC. Increased susceptibility of Alzheimer’s disease temporal cotex oxygen free radical-mediated processes. Free Rad Biol Med. 1997;23:183–190. doi: 10.1016/S0891-5849(96)00573-4
  • Lazzarino G, Raatikainen P, Nuutinen M, et al. Myocardial release of malondialdehyde and purine compounds during coronary bypass surgery. Circ. 1994;90:291–297. doi: 10.1161/01.CIR.90.1.291
  • Wiernsperger NF. Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diab Med. 2003;29:579–585. doi: 10.1016/S1262-3636(07)70072-1
  • Annweiler C, Beauchet O, Berrut G, et al. Is there a relationship between serum vitamin D insufficiency and reduced muscle strength among older women? results from baseline assessment of EPIDOS study. J Nut Health Ag. 2009;13:90–95. doi: 10.1007/s12603-009-0013-1
  • McCann JC, Ames BN. Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? Faseb J. 2008;22:982–1001. doi: 10.1096/fj.07-9326rev
  • Garcion E, Wion-Barbot N, Montero-Menei C, et al. New clues about vitamin D functions in the nervous system. Tends Met. 2002;13:100–105.
  • Kalueff AV, Keisala T, Minasyan A, et al. Behavioural anomalies in mice evoked by “Tokyo” disruption of the Vitamin D receptor gene. Neur Res. 2006;54(4):254–260. doi: 10.1016/j.neures.2005.12.008
  • Buell JS, Dawson-Hughes B. Vitamin D and neurocognitive dysfunction: preventing “Decline? Molec Asp Med. 2008;29(6):415–422. doi: 10.1016/j.mam.2008.05.001
  • Kalueff AV, Tuohimaa P. Neurosteroid hormone vitamin D and its utility in clinical nutrition. Curr Op Clin Nut Metab Care. 2007;10:12–19. doi: 10.1097/MCO.0b013e328010ca18
  • Grimm MO, Mett J, Hartmann T. The Impact of Vitamin E and other fatsoluble Vitamins on Alzheimer’s disease. Int J Mol Sci. 2016;17:1785. doi: 10.3390/ijms17111785
  • Stumpf WE, Sar M, Clark SA, et al. Brain target sites for 1,25-dihydroxyvitamin D3. Science. 1982;215:1403–1405. doi: 10.1126/science.6977846
  • Annweiler C, Allali G, Allain P, et al. Vitamin D and cognitive performance in adults: a systematic review. Eur J Neur. 2009;16:1083–1089. doi: 10.1111/j.1468-1331.2009.02755.x
  • Polidoro L, Properzi G, Marampon F, et al. Vitamin D protects human endothelial cells from H2O2 oxidant injury through the Mek/Erk-sirtl axis activation. J Card Transl Res. 2013;6(2):221–231. doi: 10.1007/s12265-012-9436-x
  • Farhangi MA, Nameni G, Hajiluian G, et al. Cardiac tissue oxidative stress and inflammation after vitamin D administrations in high fat- diet induced obese rats. BMC Cardiovasc Disord. 2017;17(1):161. doi: 10.1186/s12872-017-0597-z
  • Bhat M, Ismail A. Vitamin D treatment protects against and reverses oxidative stress induced muscle proteolysis. J Steroid Biochem Mol Biol. 2015;152:171–179. doi: 10.1016/j.jsbmb.2015.05.012
  • Paxinos G, Watson C. The Rat brain in stereotaxic coordinates. San Diego: Academic Press; 1986.
  • Tiwari V, Kuhad A, Bishnoi M, et al. Chronic treatment with tocotrienol, an isoform of vitamin E, prevents intracerebroventricular streptozotocin-induced cognitive impairment and oxidative-nitrosative stress in rats. Pharm Biochem Beh. 2009;93:183–189. doi: 10.1016/j.pbb.2009.05.009
  • Borges ACR, Feres T, Vianna LM, et al. Cholecalciferol treatment restores the relaxant responses of spontaneously hypertensive rat arteries to bradykinin. Pathop. 2002;8:263–268. doi: 10.1016/S0928-4680(02)00036-6
  • Santos RS, Vianna LM. Effect of cholecalciferol supplementation on blood glucose in an experimental model of type 2 diabetes mellitus in spontaneously hypertensive rats and Wistar rats. Clin Chimica Acta. 2005;358:146–150. doi: 10.1016/j.cccn.2005.02.020
  • Gutierres JM, Carvalho FB, Rosa MM, et al. Protective effect of α-Tocopherol on memory deficits and Na+,K+-ATPase and acetylcholinesterase activities in rats with diet-induced hypercholesterolemia. Biom Aging Path. 2012;2:73–80. doi: 10.1016/j.biomag.2012.03.004
  • Bradford MM. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3
  • Ellman GL, Courtney KD, Andres Jr V, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharm. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9
  • Rocha JB, Emanuelli T, Pereira ME. Effects of early undernutrition on kinetic parameters of brain acetylcholinesterase from adult rats. Acta Neur Exp (Warsaw). 1993;53:431–437.
  • Ali SF, LeBel CP, Bondy SC. Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurot. 1992;13:637–648.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3
  • Levini RL, Garland D, Oliver CN, et al. Determination of carbonyl content in oxidatively modified proteins. Meth Enzym. 1990;186:464–478. doi: 10.1016/0076-6879(90)86141-H
  • Jacques-Silva MC, Nogueira CW, Broch LC, et al. Diphenyl diselenide and ascorbic changes deposition of selenium and ascorbic acid in liver and brain of mice. Pharm Toxic. 2001;88:119–125. doi: 10.1034/j.1600-0773.2001.d01-92.x
  • Ellman GL. Tissue sulphydryl groups. Arch Biochem Bioph. 1959;82:70–77. doi: 10.1016/0003-9861(59)90090-6
  • Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976;74:214–226. doi: 10.1016/0003-2697(76)90326-2
  • Morris RG. Development of a water maze procedure for studying spatial learning in the rat. J Neurosc Met. 1984;11:47–60. doi: 10.1016/0165-0270(84)90007-4
  • Pinton S, Brüning CA, Oliveira CES, et al. Therapeutic effect of organoselenium dietary supplementation in a sporadic dementia of Alzheimer's type model in rats. J Nut Biochem. 2013;24:311–317. doi: 10.1016/j.jnutbio.2012.06.012
  • de la Monte SM, Tong M, Lester-Coll N, et al. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer's disease. J Alzheimer's Dis. 2006;10:89–109. doi: 10.3233/JAD-2006-10113
  • Lester-Coll N, Rivera EJ, Soscia SJ, et al. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer's disease. J Alzh Dis. 2006;9:13–33. doi: 10.3233/JAD-2006-9102
  • Behl C. Alzheimer’s disease and oxidative stress: implications for novel therapeutic approaches. Prog Neurobiol. 1999;57:323. doi: 10.1016/S0301-0082(98)00055-0
  • Chevion M, Berenshtein E, Stadtman ER. Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Rad Res. 2000;33:99–108.
  • Gezen-Ak D, Dursun E, Yilmazer S. Vitamin D inquiry in hippocampal neurons: consequences of vitamin D-VDR pathway disruption on calcium channel and the vitamin D requirement. J Neur Scien. 2013;34:1453–1458. doi: 10.1007/s10072-012-1268-6
  • Donne ID, Rossi R, Giustarini D, et al. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329:23–38. doi: 10.1016/S0009-8981(03)00003-2
  • Perry G, Hirai K, Aliev G, et al. Mitochondrial abnormalities in Alzheimer disease. Neurob Aging. 2000;21:213. doi: 10.1016/S0197-4580(00)83289-3
  • Frei B, England L, Ames BN. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Nat Acad Scien. 1989;88:6377–6381. doi: 10.1073/pnas.86.16.6377
  • Jaswinder SB, Christopher AS. Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Rev. 1997;25:335–358. doi: 10.1016/S0165-0173(97)00045-3
  • Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem. 2000;267:4912–4916. doi: 10.1046/j.1432-1327.2000.01597.x
  • Dursun E, Gezen- Ak D, Yilmazer S. A novel perspective for Alzheimer’s disease: vitamin D receptor suppression by Amyloid-β and preventing the Amyloid-β induced alterations by vitamin D in cortical neurons. J Alz Dis. 2010;23:207–219. doi: 10.3233/JAD-2010-101377
  • D’Hooge R, de Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Rev. 2001;36:60–90. doi: 10.1016/S0165-0173(01)00067-4
  • Becker A, Eyles DW, McGrath JJ, et al. Transient prenatal vitamin D deficiency is associated with subtle alterations in learning and memory functions in adult rats. Beh Brain Res. 2005;161:306–312. doi: 10.1016/j.bbr.2005.02.015
  • Naghizadeha B, Mansouria MT, Ghorbanzadehb B, et al. Protective effects of oral crocin against intracerebroventricular streptozotocin-induced spatial memory deficit and oxidative stress in rats. Phytomed. 2013;20:537–542. doi: 10.1016/j.phymed.2012.12.019