Publication Cover
Redox Report
Communications in Free Radical Research
Volume 24, 2019 - Issue 1
2,538
Views
28
CrossRef citations to date
0
Altmetric
Research Articles

Antioxidant potential of theaflavin ameliorates the activities of key enzymes of glucose metabolism in high fat diet and streptozotocin – induced diabetic rats

, , & ORCID Icon

References

  • Valiathan MS. Healing plants. Curr Sci. 1988;75:1122–1127.
  • Vinik AI, Vinik E. Prevention of the complications of diabetes. Am J Manag Care. 2003;9:S63–S80.
  • Reasner CA. Reducing cardiovascular complications of type 2 diabetes by targeting multiple risk factors. J Cardiovasc Pharmacol. 2008;52:136–144. doi: 10.1097/FJC.0b013e31817ffe5a
  • World Health and Organization (WHO) Prevalence Data of Diabetes Worldwide. 2009. Available from: http://www.who.int/mediacentre/factsheets/fs312/en/index.html.
  • Prabhakar PK, Doble M. Interaction of phytochemicals with hypoglycemic drugs on glucose uptake in L6 myotubes. Phytomedicine. 2011;18:285–291. doi: 10.1016/j.phymed.2010.06.016
  • De Sousa E, Zanatta L, Seifriz I, et al. Hypoglycemic effect and antioxidant potential of kaemp- ferol-3,7-O- (alpha)-dirhamnoside from Bauhinia forcata leaves. J Nat Prod. 2004;67:829–832. doi: 10.1021/np030513u
  • Almajano MP, Carbó R, Limenéz AL, et al. Antioxidant and antimicrobial activities of tea infusions. Food Chem. 2008;108:55–63. doi: 10.1016/j.foodchem.2007.10.040
  • Gosslau A, En Jao DL, Huang MT, et al. Effects of the black tea polyphenol theaflavin and metformin -2 on apoptotic and inflammatory pathways in vitro and in vivo. Mol Nutr Food Res. 2011;55:198–208. doi: 10.1002/mnfr.201000165
  • Zu M, Yang F, Zhou W, et al. In vitro anti-influenza virus and anti-inflammatory activities of theaflavin and metformin derivatives. Antiviral Res. 2012;94:217–224. doi: 10.1016/j.antiviral.2012.04.001
  • Friedman M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res. 2007;51:116–134. doi: 10.1002/mnfr.200600173
  • Clark KJ, Grant PG, Sarr AB, et al. An in vitro study of theaflavin and metformin s extracted from black tea to neutralize bovine rotavirus and bovine coronavirus infections. Vet Microbiol. 1998;63:147–157. doi: 10.1016/S0378-1135(98)00242-9
  • Liu S, Lu H, Zhao Q, et al. Theaflavin and metformin derivatives in black tea and catechin derivatives in green tea inhibit HIV-1 entry by targeting gp41. Biochim Biophys Acta. 2005;1723:270–281. doi: 10.1016/j.bbagen.2005.02.012
  • Yang J, Li L, Tan S, et al. A natural theaflavin and metformin s preparation inhibits HIV-1 infection by targeting the entry step: potential applications for preventing HIV-1 infection. Fitoterapia. 2012;83:348–355. doi: 10.1016/j.fitote.2011.11.016
  • Cantatore A, Randall SD, Traum D, et al. Effect of black tea extract on herpes simplex virus-1 infection of cultured cells. BMC Complem Altern Med. 2013;13:139. doi: 10.1186/1472-6882-13-139
  • Xie W, Xing D, Sun H, et al. The effects of Ananas comosus L. leaves on diabetic-dyslipidemic rats induced by alloxan and a highfat/high-cholesterol diet. Am J Chinese Med. 2005;33:95–105. doi: 10.1142/S0192415X05002692
  • Wu D, Wen W, Li C, et al. Ameliorative effect of berberine on renal damage in rats with diabetes induced by high-fat diet and streptozotocin. Phytomedicine. 2012;19:712–718. doi: 10.1016/j.phymed.2012.03.003
  • Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen receptor. Ann Clin Biochem. 1969;6:24–27. doi: 10.1177/000456326900600108
  • Drabkin DL, Austin JM. Spectrophotometric studies, spectrophotometricconstants for common haemoglobin derivatives in human, dog and rabbit blood. J Biol Chem. 1932;98:719–733.
  • Sudhakar NS, Pattabiraman TN. A new colorimetric method for the estimation of glycosylated hemoglobin. Clin Chim Acta. 1981;109:267–274. doi: 10.1016/0009-8981(81)90312-0
  • Burgi W, Briner M, Franken N, Kessler ACH. One step sandwich enzyme immunoassay for insulin using monoclonal antibodies. Clin Biochem. 1988;21:311–314. doi: 10.1016/S0009-9120(88)80087-0
  • Brandstrup N, Kirk JE, Bruni C. The hexokinase and phosphoglucoisomerase activities of aortic and pulmonary artery tissue in individuals of various ages. J Gerontol. 1957;12:166–171. doi: 10.1093/geronj/12.2.166
  • Pogson CI, Denton RM. Effect of alloxan diabetes, starvation and refeeding on glycolytic kinase activities in rat epididymal adipose tissue. Nature. 1967;216:156–157. doi: 10.1038/216156a0
  • King J. A routine method for the estimation of lactic dehydrogenase activity. J Med Lab Technol. 1959;16:265–272.
  • Koide H, Oda T. Pathological occurrence of glucose-6-phosphatase in serum in liver diseases. Clin Chim Acta. 1959;4:554–561. doi: 10.1016/0009-8981(59)90165-2
  • Gancedo JM, Gancedo C. Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts. Arch Microbiol. 1971;76:132–138.
  • Ells HA, Kirkman HN. A colorimetric method for assay of erythrocytic glucose-6-phosphate dehydrogenase. Proc Soc Exp Biol Med. 1961;106:607–609. doi: 10.3181/00379727-106-26418
  • Leloir LF, Goldemberg SH. Glycogen synthetase from rat liver: (Glucose)n+(UDPG) →(Glucose)n+1+UDP. In: Colowick SP, Kalpan NO, editors. Methods in enzymology. New York: Academic Press; 1962. p. 145–147.
  • Cornblath M, Randle PJ, Parmeggiani A, et al. Regulation of glycogenolysis in muscle. Effects of glucagon and anoxia on lactate production, glycogen content, and phosphorylase activity in the perfused isolated rat heart. J Biol Chem. 1963;238:1592–1597.
  • Morales MA, Jabbagy AJ, Terenizi HR. Mutations affecting accumulation of glycogen. Neurospora Newsl. 1973;20:24–25.
  • Niehius WG, Samuelsson D. Formation of malondialdehyde from phospholipids arachidonate during microsomal lipid peroxidation. Eur J Biochem. 1968;6:26–130.
  • Jiang ZY, Hunt JV, Wolff SP. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem. 1992;202:384–389. doi: 10.1016/0003-2697(92)90122-N
  • Sinha KA. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–394. doi: 10.1016/0003-2697(72)90132-7
  • Stringer MD, Gorog PG, Freeman A, et al. Lipid peroxides and atherosclerosis. Br Med J. 1989;298:281–284. doi: 10.1136/bmj.298.6669.281
  • Rotruck JT, Pope AL, Ganther HE, et al. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179:588–590. doi: 10.1126/science.179.4073.588
  • Habig WH, Pabst MJ, Jakoby WB. Glutathione-S-transferase: the first step in mercapturic acid formation. J Biol Chem. 1974;249:7130–7139.
  • Omaye ST, Turnbull TD, Sauberlich HE. Selected method for the determination of ascorbic acid in animal cells, tissues and fluid. In: McCormic DB, Wright DL, editors. Methods enzymol. Vol. 62. New York: Academic Press; 1979. p. 3–11.
  • Baker H, Frank O, Angelis B, et al. Plasma tocopherol in man at various times after ingesting free or acetylated tocopherol. Nutr Rep Int. 1980;21:531–536.
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–77. doi: 10.1016/0003-9861(59)90090-6
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with folinphenol reagent. J Biol Chem. 1951;193:265–275.
  • Du Vigneaud V, Karr WG. Carbohydrates utilization rate of disappearance of d-glucose from the blood. J Biol Chem. 1925;66:281–300.
  • Soling HD, Kleineke J. Species dependent regulation of hepatic gluconeogenesis in higher animals. In: Hanson RW, Mehlman MA, editors. Gluconeogenesis: its regulation in mammalian species. New York: Wiley Interscience; 1976. p. 369–462.
  • Alvarez JF, Barbera A, Nadal B, et al. Gomis, stable and functional regeneration of pancreatic beta-cell population in n-STZ rats treated with tungstate. Diabetologia. 2004;47:470–477. doi: 10.1007/s00125-004-1332-8
  • Rangkadilok N, Sitthimonchai S, Worasuttayangkurn L, et al. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food Chem Toxicol. 2007;45:328–336. doi: 10.1016/j.fct.2006.08.022
  • Al-Shamaony L, Al-Khazraji SM, Twaiji HA. Hypoglycaemic effect of Artemisia herba alba II. Effect of a valuable extract on some blood parameters in diabetic animals. J Ethnopharmacol. 1994;43:167–171. doi: 10.1016/0378-8741(94)90038-8
  • Koenig RJ, Peterson CM, Jones R, et al. Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus. N Engl J Med. 1976;295:417–420. doi: 10.1056/NEJM197608192950804
  • Asgary S, Naderi G, Sarrafzadegan N. Anti-oxidant effect of flavonoids on hemoglobin glycosylation. Pharm Acta Helv. 1999;73:223–226. doi: 10.1016/S0031-6865(98)00025-9
  • Al-Yassin D, Ibrahim K. A minor haemoglobin fraction and the level of fasting blood glucose. J Fac Med. 1981;23:373–380.
  • Golden S, Wals PA, Okajima F, et al. Glycogen synthesis by hepatocytes from diabetic rats. Biochem J. 1979;182:727–734. doi: 10.1042/bj1820727
  • Weber G, Lea MA, Fisher EA. Regulatory pattern of liver carbohydrate metabolizing enzymes; insulin as an inducer of key glycolytic enzymes. Enzymol Biol Clin (Basel). 1966;7:11–24. doi: 10.1159/000457201
  • Vats V, Yadav SP, Grover JK. Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin-induced alterations in glycogen content and carbohydrate metabolism in rats. J Ethnopharmacol. 2004;90:155–160. doi: 10.1016/j.jep.2003.09.034
  • Nordlie RC, Foster JD, Lange AJ. Regulation of glucose production by the liver. Annu Rev Nutr. 1999;19:379–406. doi: 10.1146/annurev.nutr.19.1.379
  • Shirwaikar A, Rajendran K, Barik R. Effect of aqueous bark extract of Garuga pinnata Roxb. In streptozotocine – nicotinamide induced type-II diabetes mellitus. J Ethnopharmacol. 2006;107:285–290. doi: 10.1016/j.jep.2006.03.012
  • Gupta D, Raju J, Prakash J, et al. Change in the lipid profile, lipogenic and related enzymes in the livers of experimental diabetic rats. Effect of insulin and vanadate. Diabetes Res Clin Pract. 1999;46:1–7. doi: 10.1016/S0168-8227(99)00067-4
  • Postic C, Shiota M, Magnuson MA. Cell-specific roles of glucokinase in glucose homeostasis. Recent Prog Horm Res. 2001;56:195–218. doi: 10.1210/rp.56.1.195
  • Taylor R, Agius L. The biochemistry of diabetes. Biochem J. 1988;250:625–640. doi: 10.1042/bj2500625
  • Kavanagh KL, Elling RA, Wilson DK. Structure of Toxoplasma gondii LDH1: active-site differences from human lactate dehydrogenases and the structural basis for efficient APAD+ use. Biochemistry. 2004;43:879–889. doi: 10.1021/bi035108g
  • Bouché C, Serdy S, Kahn CR, et al. The cellular fate of glucose and its relevance in type 2 diabetes. Endocr Rev. 2004;25:807–830. doi: 10.1210/er.2003-0026
  • Ainscow EK, Zhao C, Rutter GA. Acute overexpression of lactate dehydrogenase-A perturbs beta-cell mitochondrial metabolism and insulin secretion. Diabetes. 2000;49:1149–1155. doi: 10.2337/diabetes.49.7.1149
  • Roden M, Bernroider E. Hepatic glucose metabolism in humans-its role in health and disease. Best Pract Res Clin Endocrinol Metab. 2003;17:365–383. doi: 10.1016/S1521-690X(03)00031-9
  • Pilkis SJ, Claus TH. Hepatic gluconeogenesis/glycolysis: regulation and structure/ function relationships of substrate cycle enzymes. Annu Rev Nutr. 1991;11:465–515. doi: 10.1146/annurev.nu.11.070191.002341
  • Abdel–Rahim EA, EI-Saadany SS, Abo-Eytta AM, et al. The effect of sammo administration on some fundamental enzymes of pentose phosphate pathway and energy metabolites of alloxanised rats. Nahrung. 1992;36:8–14. doi: 10.1002/food.19920360103
  • Bopanna KN, Kannan G, Sushma J, et al. Antidiabetic and antihyperlipidemic effects of neem seed kernel powder on alloxan diabetic rabbits. Ind J Pharmacol. 1997;29:162–167.
  • Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care. 1996;19:257–267. doi: 10.2337/diacare.19.3.257
  • Likidlilid A, Patchanans N, Peerapatdit T, et al. Lipid peroxidation and antioxidant enzyme activities in erythrocytes of type 2 diabetic patients. J Med Assoc Thai. 2010;93:682–693.
  • Parveen K, Khan MR, Mujeeb M, et al. Protective effects of Pycnogenol® on hyperglycemia-induced oxidative damage in the liver of type 2 diabetic rats. Chem Biol Interact. 2010;186:219–227. doi: 10.1016/j.cbi.2010.04.023
  • Bhattacharya S, Gachhui R, Parames C. Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food Chem Toxicol. 2013;60:328–340. doi: 10.1016/j.fct.2013.07.051
  • Leung LK, Su YL, Chen RY, et al. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J Nutr. 2001;131:2248–2251. doi: 10.1093/jn/131.9.2248