Publication Cover
Redox Report
Communications in Free Radical Research
Volume 25, 2020 - Issue 1
2,200
Views
14
CrossRef citations to date
0
Altmetric
Review Article

Protective effects of 1,25 dihydroxyvitamin D3 and its analogs on ultraviolet radiation-induced oxidative stress: a review

ORCID Icon & ORCID Icon

References

  • Leiter U, Eigentler T, Garbe C. Epidemiology of skin cancer. Adv Exp Med Biol. 2014;810:120–140.
  • Kochevar IE, Pathak MA, Parrish JA. Photophysics, Photochemistry and photobiology. In: IM Freedberg, Eisen A, Wolff K, Austen KF, Goldsmith L, Katz S, Fitzpatrick TB, editor. Fitzpatrick's Dermatology in General Medicine. New York: McGraw-Hill; 1999. p. 220–230.
  • Halliday GM. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat Res. 2005;571(1-2):107–120.
  • Ravanat JL, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol, B. 2001;63(1-3):88–102.
  • Ming M, He YY. PTEN in DNA damage repair. Cancer Lett. 2012;319(2):125–129.
  • Mitchell DL, Nairn RS. The biology of the (6-4) photoproduct. Photochem Photobiol. 1989;49(6):805–819.
  • Mitchell DL, Cleaver JE, Epstein JH. Repair of pyrimidine(6-4)pyrimidone photoproducts in mouse skin. J Invest Dermatol. 1990;95(1):55–59.
  • Kulms D, Zeise E, Pöppelmann B, et al. DNA damage, death receptor activation and reactive oxygen species contribute to ultraviolet radiation-induced apoptosis in an essential and independent way. Oncogene. 2002;21(38):5844–5851.
  • Pourzand C, Tyrrell RM. Apoptosis, the role of oxidative stress and the example of solar UV radiation. Photochem Photobiol. 1999;70(4):380–390.
  • Valko M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1–40.
  • Deliconstantinos G, Villiotou V, Stavrides JC. Alterations of nitric oxide synthase and xanthine oxidase activities of human keratinocytes by ultraviolet B radiation: potential role for peroxynitrite in skin inflammation. Biochem Pharmacol. 1996;51(12):1727–1738.
  • Scharffetter-Kochanek K, et al. UV-induced reactive oxygen species in photocarcinogenesis and photoaging. Biol Chem. 1997;378(11):1247–1257.
  • Dixon KM, Tongkao-On W, Sequeira V, et al. Vitamin D and death by sunshine. Int J Mol Sci. 2013;14(1):1964–1977.
  • Kasai H, et al. Photosensitized formation of 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) in DNA by riboflavin. Nucleic Acids Symp Ser. 1992;27:181–182.
  • Hattori Y, Nishigori C, Tanaka T, et al. 8-hydroxy-2'-deoxyguanosine is increased in epidermal cells of hairless mice after chronic ultraviolet B exposure. [erratum appears in J Invest Dermatol 1997 Feb;108(2):237]. J Invest Dermatol. 1996;107(5):733–737.
  • Poli G, Leonarduzzi G, Biasi F, et al. Oxidative stress and cell signalling. Curr Med Chem. 2004;11(9):1163–1182.
  • Sander CS, Hamm F, Elsner P, et al. Oxidative stress in malignant melanoma and non-melanoma skin cancer. Br J Dermatol. 2003;148(5):913–922.
  • Holick MF. The cutaneous photosynthesis of previtamin D3: a unique photoendocrine system. J Invest Dermatol. 1981;77(1):51–58.
  • Bikle DD, Nemanic MK, Whitney JO, et al. Neonatal human foreskin keratinocytes produce 1,25-dihydroxyvitamin D3. Biochemistry. 1986;25(7):1545–1548.
  • Lehmann B, Rudolph T, Pietzsch J, et al. Conversion of vitamin D3 to 1alpha,25-dihydroxyvitamin D3 in human skin equivalents. Exp Dermatol. 2000;9(2):97–103.
  • Shariev A, et al. PTEN: a novel target for vitamin D in the fight against melanoma, in 16th World Congress on Cancers of the Skin. 2016, Melanoma Research: Vienna, Austria. p. e20–21.
  • Frampton RJ, Omond SA, Eisman JA. Inhibition of human cancer cell growth by 1,25-dihydroxyvitamin D3 Metabolites. Cancer Res. 1983;43(9):4443–4447.
  • Evans SR, Houghton AM, Schumaker L, et al. Vitamin D Receptor and growth inhibition by 1,25-dihydroxyvitamin D3 in human malignant melanoma cell lines. J Surg Res. 1996;61(1):127–133.
  • Pan L, Matloob AF, Du J, et al. Vitamin D stimulates apoptosis in gastric cancer cells in synergy with trichostatin A /sodium butyrate-induced and 5-aza-2′-deoxycytidine-induced PTEN upregulation. FEBS J. 2010;277(4):989–999.
  • De Haes P, Garmyn M, Verstuyf A, et al. 1,25-Dihydroxyvitamin d3 and analogues protect primary human keratinocytes against UVB-induced DNA damage. J Photochem Photobiol. B Biology. 2005;78(2):141–148.
  • McLane JA, Katz M, Abdelkader N. Effect of 1,25-dihydroxyvitamin D3 on human keratinocytes grown under different culture conditions. In Vitro Cell Dev Biol. 1990;26(4):379–387.
  • De Haes P, Garmyn M, Degreef H, et al. 1,25-Dihydroxyvitamin d3 inhibits ultraviolet B-induced apoptosis, Jun kinase activation, and interleukin-6 production in primary human keratinocytes. J Cell Biochem. 2003;89(4):663–673.
  • Dixon KM, Deo SS, Norman AW, et al. In vivo relevance for photoprotection by the vitamin D rapid response pathway. J Steroid Biochem Mol Biol. 2007;103(3-5):451–456.
  • Dixon KM, Deo SS, Wong G, et al. Skin cancer prevention: a possible role of 1,25dihydroxyvitamin D3 and its analogs. J Steroid Biochem Mol Biol. 2005;97(1-2):137–143.
  • Wong G, Gupta R, Dixon KM, et al. 1,25-Dihydroxyvitamin d and three low-calcemic analogs decrease UV-induced DNA damage via the rapid response pathway. J Steroid Biochem Mol Biol. 2004;89-90(1-5):567–570.
  • Damian DL, Kim YJ, Dixon KM, et al. Topical calcitriol protects from UV-induced genetic damage but suppresses cutaneous immunity in humans. Exp Dermatol. 2010;19(8):e23–e30.
  • Rybchyn MS, De Silva WGM, Sequeira VB, et al. Enhanced repair of UV-induced DNA damage by 1,25-dihydroxyvitamin D3 in skin Is Linked to pathways that control cellular energy. J Invest Dermatol. 2018;138(5):1146–1156.
  • Gordon-Thomson C, Gupta R, Tongkao-on W, et al. 1α,25 dihydroxyvitamin D3 enhances cellular defences against UV-induced oxidative and other forms of DNA damage in skin. Photochem Photobiol Sci. 2012;11(12):1837–1847.
  • Song EJ, Gordon-Thomson C, Cole L, et al. 1α,25-Dihydroxyvitamin d3 reduces several types of UV-induced DNA damage and contributes to photoprotection. J Steroid Biochem Mol Biol. 2013;136:131–138.
  • Holick MF. Mccollum Award Lecture, 1994: vitamin D–new horizons for the 21st century. Am J Clin Nutr. 1994;60(4):619–630.
  • Bouillon R, Okamura WH, Norman AW. Structure-function relationships in the vitamin D endocrine system. Endocr Rev. 1995;16(2):200–257.
  • Dixon KM, Sequeira VB, Deo SS, et al. Differential photoprotective effects of 1,25-dihydroxyvitamin D3 and a low calcaemic deltanoid. Photochem Photobiol Sci. 2012;11(12):1825–1830.
  • Youn JI, Park BS, Chung JH, et al. Photoprotective effect of calcipotriol upon skin photoreaction to UVA and UVB. Photodermatol Photoimmunol Photomed. 1997;13(3):109–114.
  • Dixon KM, Norman AW, Sequeira VB, et al. 1alpha,25(OH)(2)-vitamin d and a nongenomic vitamin D analogue inhibit ultraviolet radiation-induced skin carcinogenesis. Cancer Prev Res (Phila). 2011;4(9):1485–1494.
  • Romero-Graillet C, Aberdam E, Clément M, et al. Nitric oxide produced by ultraviolet-irradiated keratinocytes stimulates melanogenesis. J Clin Invest. 1997;99(4):635–642.
  • Seo SJ, Choi HG, Chung HJ, et al. Time course of expression of mRNA of inducible nitric oxide synthase and generation of nitric oxide by ultraviolet B in keratinocyte cell lines. Br J Dermatol. 2002;147(4):655–662.
  • Virág L, Szabo E, Bakondi E, et al. Nitric oxide-peroxynitrite-poly(ADP-ribose) polymerase pathway in the skin. Exp Dermatol. 2002;11(3):189–202.
  • Niles JC, Wishnok JS, Tannenbaum SR. Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide. 2006;14(2):109–121.
  • Jaiswal M, et al. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res. 2000;60(1):184–190.
  • Bau DT, Gurr JR, Jan KY. Nitric oxide is involved in arsenite inhibition of pyrimidine dimer excision. Carcinogenesis. 2001;22(5):709–716.
  • Saelens X, Festjens N, Walle LV, et al. Toxic proteins released from mitochondria in cell death. Oncogene. 2004;23(16):2861–2874.
  • Chung HT, Pae H-O, Choi B-M, et al. Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun. 2001;282(5):1075–1079.
  • Kim YM, Bergonia H, Lancaster Jr. JR. Nitrogen oxide-induced autoprotection in isolated rat hepatocytes. FEBS Lett. 1995;374(2):228–232.
  • Gupta R, Dixon KM, Deo SS, et al. Photoprotection by 1,25 dihydroxyvitamin D3 is associated with an increase in p53 and a decrease in nitric oxide products. J Invest Dermatol. 2007;127(3):707–715.
  • Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002;192(1):1–15.
  • Seo YR, Jung HJ. The potential roles of p53 tumor suppressor in nucleotide excision repair (NER) and base excision repair (BER). Exp Mol Med. 2004;36(6):505–509.
  • Sablina AA, Budanov AV, Ilyinskaya GV, et al. The antioxidant function of the p53 tumor suppressor. Nat Med. 2005;11(12):1306–1313.
  • Budanov AV. The role of tumor suppressor p53 in the antioxidant defense and metabolism. In: S Deb, S Deb, editors. Vol. 85, Mutant p53 and MDM2 in cancer. Subcellular Biochemistry. Dordrecht: Springer; 2014. p. 337–358.
  • Holley AK, Bakthavatchalu V, Velez-Roman JM, et al. Manganese superoxide dismutase: guardian of the powerhouse. Int J Mol Sci. 2011;12(10):7114–7162.
  • Sequeira VB, Rybchyn MS, Gordon-Thomson C, et al. Opening of chloride channels by 1α,25-dihydroxyvitamin D3 contributes to photoprotection against UVR-induced thymine dimers in keratinocytes. J Invest Dermatol. 2013;133(3):776–782.
  • Karasawa M, Hosoi J, Hashiba H, et al. Regulation of metallothionein gene expression by 1 alpha,25-dihydroxyvitamin D3 in cultured cells and in mice. Proc. Natl. Acad. Sci. U.S.A.. 1987;84(24):8810–8813.
  • Hanada K, Sawamura D, Nakano H, et al. Possible role of 1,25-dihydroxyvitamin D3-induced metallothionein in photoprotection against UVB injury in mouse skin and cultured rat keratinocytes. J Dermatol Sci. 1995;9(3):203–208.
  • De Haes P, Garmyn M, Verstuyf A, et al. Two 14-epi analogues of 1,25-dihydroxyvitamin D3 protect human keratinocytes against the effects of UVB. Arch Dermatol Res. 2004;295(12):527–534.
  • Lee J, Youn JI. The photoprotective effect of 1,25-dihydroxyvitamin D3 on ultraviolet light B-induced damage in keratinocyte and its mechanism of action. J Dermatol Sci. 1998;18(1):11–18.
  • Vallee BL. The function of metallothionein. Neurochem Int. 1995;27(1):23–33.
  • Thornalley PJ, Vasak M. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta. 1985;827(1):36–44.
  • Hanada K, et al. Possible role of cutaneous metallothionein in protection against photo-oxidative stress–epidermal localization and scavenging activity for superoxide and hydroxyl radicals. Photodermatol Photoimmunol Photomed. 1992-1993;9(5):209–213.
  • Hanada K, Sawamura D, Tamai K, et al. Novel function of metallothionein in photoprotection: metallothionein-null mouse exhibits reduced tolerance against ultraviolet B injury in the skin. J Invest Dermatol. 1998;111(4):582–585.
  • Sheehan JM, Young AR. The sunburn cell revisited: an update on mechanistic aspects. Photochem Photobiol Sci. 2002;1(6):365–377.
  • Assefa Z, et al. Ultraviolet radiation-induced apoptosis in keratinocytes: on the role of cytosolic factors. Biochim Biophys Acta. 2005;1755(2):90–106.
  • Assefa Z, Garmyn M, Bouillon R, et al. Differential stimulation of ERK and JNK activities by ultraviolet B irradiation and epidermal growth factor in human keratinocytes. J Invest Dermatol. 1997;108(6):886–891.
  • Tournier C, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science. 2000;288(5467):870–874.
  • Otterbein LE, Soares MP, Yamashita K, et al. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 2003;24(8):449–455.
  • Otterbein LE, Choi AM. Heme oxygenase: colors of defense against cellular stress. Am J Physiol - Lung Cell Mol Physiol. 2000;279(6):L1029–L1037.
  • Keyse SM, Tyrrell RM. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci U S A. 1989;86(1):99–103.
  • Vile GF, Tyrrell RM. Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in ferritin. J Biol Chem. 1993;268(20):14678–14681.
  • Oermann E, Bidmon H-J, Witte O-W, et al. Effects of 1alpha,25 dihydroxyvitamin D3 on the expression of HO-1 and GFAP in glial cells of the photothrombotically lesioned cerebral cortex. J Chem Neuroanat. 2004;28(4):225–238.
  • Bao BY, Ting H-J, Hsu J-W, et al. Protective role of 1 alpha, 25-dihydroxyvitamin D3 against oxidative stress in nonmalignant human prostate epithelial cells. Int J Cancer. 2008;122(12):2699–2706.
  • Rocker D, Ravid A, Liberman UA, et al. 1,25-Dihydroxyvitamin d3 potentiates the cytotoxic effect of TNF on human breast cancer cells. Mol Cell Endocrinol. 1994;106(1-2):157–162.
  • Ravid A, et al. 1,25-Dihydroxyvitamin d3 enhances the susceptibility of breast cancer cells to doxorubicin-induced oxidative damage. Cancer Res. 1999;59(4):862–867.