Publication Cover
Redox Report
Communications in Free Radical Research
Volume 25, 2020 - Issue 1
1,432
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Renin angiotensin system blockage by losartan neutralize hypercholesterolemia-induced inflammatory and oxidative injuries

, , , , & ORCID Icon

References

  • Farrell GC, Teoh N, McCuskey R. Hepatic microcirculation in fatty liver disease. Anatom Record Adv Integr Anatomy Evol Biol. 2008;291(6):684–692. doi: 10.1002/ar.20715
  • Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest. 2008;118(3):829–838. doi: 10.1172/JCI34275
  • Trauner M, Arrese M, Wagner M. Fatty liver and lipotoxicity. Biochim Biophys ActaMol Cell Biol Lipids. 2010;1801(3):299–310.
  • Kim E-H, Bae J-S, Hahm KB, et al. Endogenously synthesized n-3 polyunsaturated fatty acids in fat-1 mice ameliorate high-fat diet-induced non-alcoholic fatty liver disease. Biochem Pharmacol. 2012;84(10):1359–1365. doi: 10.1016/j.bcp.2012.08.029
  • Lee M-K, Park YB, Moon S-S, et al. Hypocholesterolemic and antioxidant properties of 3-(4-hydroxyl) propanoic acid derivatives in high-cholesterol fed rats. Chem Biol Interact. 2007;170(1):9–19. doi: 10.1016/j.cbi.2007.06.037
  • Vasu VT, Modi H, Thaikoottathil JV, et al. Hypolipidaemic and antioxidant effect of Enicostemma littorale Blume aqueous extract in cholesterol fed rats. J Ethnopharmacol. 2005;101(1–3):277–282. doi: 10.1016/j.jep.2005.05.007
  • Tomofuji T, Azuma T, Kusano H, et al. Oxidative damage of periodontal tissue in the rat periodontitis model: effects of a high-cholesterol diet. FEBS Lett. 2006;580(15):3601–3604. doi: 10.1016/j.febslet.2006.05.041
  • Huang Y, Walker KE, Hanley F, et al. Cardiac systolic and diastolic dysfunction after a cholesterol-rich diet. Circulation. 2004 Jan 6;109(1):97–102. doi: 10.1161/01.CIR.0000109213.10461.F6
  • Giricz Z, Koncsos G, Rajtik T, et al. Hypercholesterolemia downregulates autophagy in the rat heart. Lipids Health Dis. 2017 Mar 23;16(1):60. doi: 10.1186/s12944-017-0455-0
  • Alkushi AG. Biological effect of Cynara cardunculus on kidney status of hypercholesterolemic rats. Pharmacogn Mag. 2017 Oct;13(Suppl 3):S430–s436. doi: 10.4103/pm.pm_14_17
  • Meng Q, Shi D, Feng J, et al. Hypercholesterolemia up-regulates the expression of intermedin and its receptor components in the aorta of rats via inducing the oxidative stress. Ann Clin Lab Sci. 2016 Winter;46(1):5–17.
  • Chtourou Y, Slima AB, Makni M, et al. Naringenin protects cardiac hypercholesterolemia-induced oxidative stress and subsequent necroptosis in rats. Pharmacol Rep. 2015 Dec;67(6):1090–1097. doi: 10.1016/j.pharep.2015.04.002
  • Xu S, Little PJ, Lan T, et al. Tanshinone II-A attenuates and stabilizes atherosclerotic plaques in apolipoprotein-E knockout mice fed a high cholesterol diet. Arch Biochem Biophys. 2011;515(1–2):72–79. doi: 10.1016/j.abb.2011.08.006
  • Hayek T, Attias J, Smith J, et al. Antiatherosclerotic and antioxidative effects of captopril in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol. 1998;31(4):540–544. doi: 10.1097/00005344-199804000-00011
  • Keidar S, Attias J, Smith J, et al. The angiotensin-II receptor antagonist, losartan, inhibits LDL lipid peroxidation and atherosclerosis in apolipoprotein E-deficient mice. Biochem Biophys Res Commun. 1997;236(3):622–625. doi: 10.1006/bbrc.1997.6844
  • Schwemmer M, Sommer O, Bassenge E. Blockade of angiotensin signaling improves myocardial function in hypercholesterolemia independent of changes in eicosanoid release. Cardiovasc Drugs Ther. 2000;14(3):317–327. doi: 10.1023/A:1007838809551
  • Strawn WB, Chappell MC, Dean RH, et al. Inhibition of early atherogenesis by losartan in monkeys with diet-induced hypercholesterolemia. Circulation. 2000;101(13):1586–1593. doi: 10.1161/01.CIR.101.13.1586
  • Dahlöf B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the losartan intervention For endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. The Lancet. 2002;359(9311):995–1003. doi: 10.1016/S0140-6736(02)08089-3
  • Høieggen A, Alderman MH, Kjeldsen SE, et al. The impact of serum uric acid on cardiovascular outcomes in the LIFE study. Kidney Int. 2004;65(3):1041–1049. doi: 10.1111/j.1523-1755.2004.00484.x
  • Ma Y, Zhang C, Chen X, et al. The influence of modified pluronic F127 copolymers with higher phase transition temperature on arsenic trioxide-releasing properties and toxicity in a subcutaneous model of rats. AAPS PharmSciTech. 2012;13(2):441–447. doi: 10.1208/s12249-012-9756-9
  • Scandalios JG. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res. 2005;38(7):995–1014. doi: 10.1590/S0100-879X2005000700003
  • Ferro D, Parrotto S, Basili S, et al. Simvastatin inhibits the monocyte expression of proinflammatory cytokines in patients with hypercholesterolemia. J Am Coll Cardiol. 2000;36(2):427–431. doi: 10.1016/S0735-1097(00)00771-3
  • Chan KW, Ismail M, Mohd Esa N, et al. Defatted Kenaf (Hibiscus cannabinus L.) seed meal and its phenolic-saponin-rich extract protect hypercholesterolemic rats against oxidative stress and systemic inflammation via transcriptional modulation of hepatic antioxidant genes. Oxid Med Cell Longev. 2018;2018:6742571. doi: 10.1155/2018/6742571
  • Abdelrazek HM, Helmy SA, Elsayed DH, et al. Ameliorating effects of green tea extract on cadmium induced reproductive injury in male Wistar rats with respect to androgen receptors and caspase-3. Reprod Biol. 2016 Dec;16(4):300–308. doi: 10.1016/j.repbio.2016.11.001
  • Amin KA, Abd El-Twab TM. Oxidative markers, nitric oxide and homocysteine alteration in hypercholesterolimic rats: role of atorvastatine and cinnamon. Int J Clin Exp Med. 2009 Oct 5;2(3):254–265.
  • Deepa PR, Varalakshmi P. Atheroprotective effect of exogenous heparin-derivative treatment on the aortic disturbances and lipoprotein oxidation in hypercholesterolemic diet fed rats. Clin Chim Acta. 2005 May;355(1–2):119–130. doi: 10.1016/j.cccn.2004.12.007
  • Mahmoudabady M, Kazemi N, Niazmand S, et al. The effect of angiotensin-converting enzyme inhibition on inflammatory and angiogenic factors in hypercholesterolemia. Pharmacol Rep. 2015 Oct;67(5):837–841. doi: 10.1016/j.pharep.2015.01.008
  • Schulman IH, Zhou MS, Raij L. Nitric oxide, angiotensin II, and reactive oxygen species in hypertension and atherogenesis. Curr Hypertens Rep. 2005;7(1):61–67. doi: 10.1007/s11906-005-0056-6
  • Csonka C, Sarkozy M, Pipicz M, et al. Modulation of hypercholesterolemia-induced oxidative/nitrative stress in the heart. Oxid Med Cell Longev. 2016;2016:3863726. doi: 10.1155/2016/3863726
  • Muthuramu I, Mishra M, Aboumsallem JP, et al. Cholesterol lowering attenuates pressure overload-induced heart failure in mice with mild hypercholesterolemia. Aging (Albany NY. 2019 Sep 4;11(17):6872–6891.
  • Li YW, Li YM, Hon Y, et al. AT1 receptor modulator attenuates the hypercholesterolemia-induced impairment of the myocardial ischemic post-conditioning benefits. Korean Circ J. 2017 Mar;47(2):182–192. doi: 10.4070/kcj.2015.0295
  • Kojic Z, Gopcevic K, Marinkovic D, et al. Effect of captopril on serum lipid levels and cardiac mitochondrial oxygen consumption in experimentally-induced hypercholesterolemia in rabbits. Physiol Res. 2011;60(Suppl. 1):S177–S184. doi: 10.33549/physiolres.932177
  • Zhu PL, Pan SY, Zhou SF, et al. Effects of combined dietary supplementation with fenofibrate and Schisandrae Fructus pulp on lipid and glucose levels and liver function in normal and hypercholesterolemic mice. Drug Des Devel Ther. 2015;9:923–935.
  • Abliz A, Aji Q, Abdusalam E, et al. Effect of Cydonia oblonga Mill. leaf extract on serum lipids and liver function in a rat model of hyperlipidaemia. J Ethnopharmacol. 2014 Feb 3;151(2):970–974. doi: 10.1016/j.jep.2013.12.010
  • Bin-Jumah MN. Monolluma quadrangula protects against oxidative stress and modulates LDL receptor and fatty acid synthase gene expression in hypercholesterolemic rats. Oxid Med Cell Longev. 2018;2018:3914384. doi: 10.1155/2018/3914384
  • El-Demerdash E, Salam OM, El-Batran SA, et al. Inhibition of the renin–angiotensin system attenuates the development of liver fibrosis and oxidative stress in rats. Clin Exp Pharmacol Physiol. 2008 Feb;35(2):159–167.
  • Alotaibi MR, Fatani AJ, Almnaizel AT, et al. In vivo assessment of combined effects of glibenclamide and losartan in diabetic rats. Med Princ Pract. 2019;28(2):178–185. doi: 10.1159/000496104
  • Ali S, Alahmadi A, Hamdy R, et al. Renoprotective effect of red grape (Vitis vinifera L.) juice and dark raisins against hypercholesterolaemia-induced tubular renal affection in albino rats. Folia Morphol (Warsz. 2019;78(1):91–100.
  • Abdel-Zaher AO, Farghaly HSM, El-Refaiy AEM, et al. Protective effect of the standardized extract of ginkgo biloba (EGb761) against hypertension with hypercholesterolemia-induced renal injury in rats: insights in the underlying mechanisms. Biomed Pharmacother. 2017 Nov;95:944–955. doi: 10.1016/j.biopha.2017.08.078
  • Prasad K. Vitamin E and regression of hypercholesterolemia-induced oxidative stress in kidney. Mol Cell Biochem. 2014 Jan;385(1–2):17–21. doi: 10.1007/s11010-013-1809-1
  • Okamura DM, Pennathur S, Pasichnyk K, et al. CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD. J Am Soc Nephrol. 2009 Mar;20(3):495–505. doi: 10.1681/ASN.2008010009
  • Attia DM, Feron O, Goldschmeding R, et al. Hypercholesterolemia in rats induces podocyte stress and decreases renal cortical nitric oxide synthesis via an angiotensin II type 1 receptor-sensitive mechanism. J Am Soc Nephrol. 2004 Apr;15(4):949–957. doi: 10.1097/01.ASN.0000118528.00817.8E
  • Chade AR, Rodriguez-Porcel M, Rippentrop SJ, et al. Angiotensin II AT1 receptor blockade improves renal perfusion in hypercholesterolemia. Am J Hypertens. 2003 Feb;16(2):111–115. doi: 10.1016/S08957061(02)03202-8
  • Sakemi T, Baba N, Yoshikawa Y. Angiotensin-converting enzyme inhibition attenuates hypercholesterolemia and glomerular injury in hyperlipidemic Imai rats. Nephron. 1992;62(3):315–321. doi: 10.1159/000187066
  • Qin B, Wang Q, Lu Y, et al. Losartan ameliorates calcium oxalate-induced elevation of stone-related proteins in renal tubular cells by inhibiting NADPH oxidase and oxidative stress. Oxid Med Cell Longev. 2018;24(2018):1271864.
  • Oltulu F, Buhur A, Gürel Ç1, et al. Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions. Turk J Med Sci. 2019;49(5):1582–1589. doi: 10.3906/sag-1901-15
  • Wang L, Tao LJ, Peng ZZ, et al. Losartan inhibits high glucose-induced CTGF expression via ERK1/2 MAPK pathways in mouse mesangial cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2009;25(6):486–489.
  • Wang X, Chen X, Huang W, et al. Losartan suppresses the inflammatory response in collagen-induced arthritis by inhibiting the MAPK and NF-κB pathways in B and T cells. Inflammopharmacology. 2019;27(3):487–502. doi: 10.1007/s10787-018-0545-2