Publication Cover
Redox Report
Communications in Free Radical Research
Volume 25, 2020 - Issue 1
1,244
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Generation of reactive oxygen species by hydroxypyridone compound/iron complexes

& ORCID Icon

References

  • Comport M. Lipid peroxidation and cellular damage in toxic liver injury. Lab Invest. 1985;53:599–623.
  • Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-B
  • Wiwanitkit V. Quantum chemical analysis of the deferiprone-iron binding reaction. Int J Nanomedicine. 2006;1:111–113. doi: 10.2147/nano.2006.1.1.111
  • Timoshnikov VA, Kobzeva TV, Polyakov NE, et al. Inhibition of Fe2+- and Fe3+-induced hydroxyl radical production by the iron-chelating drug deferiprone. Free Radic Biol Med. 2015;78:118–122. doi: 10.1016/j.freeradbiomed.2014.10.513
  • Moridani MY, O’Brien PJ. Iron complexes of deferiprone and dietary plant catechols as cytoprotective superoxide radical scavengers. Biochem Pharmacol. 2001;62:1579–1585. doi: 10.1016/S0006-2952(01)00821-8
  • Neufeld EJ. Update on iron chelators in thalassemia. Hematology – Am Soc Hematol Educ Program. 2010;2010:451–455. doi: 10.1182/asheducation-2010.1.451
  • Kontoghiorghe CN, Kolnagou A, Kontoghiorghes GJ. Phytochelators intended for clinical use in iron overload, other diseases of iron imbalance and free radical pathology. Molecules. 2015;20:20841–20872. doi: 10.3390/molecules201119725
  • Goncalves S, Paupe V, Dassa EP, et al. Deferiprone targets aconitase: implication for Friedreich’s ataxia treatment. BMC Neurol. 2008;8:20. DOI:10.1186/1471-2377-8-20.
  • Simões RV, Veeraperumal S, Sanova IS, et al. Inhibition of prostate cancer proliferation by deferiprone. NMR Biomed. [Epub 2017 Mar 8]. doi: 10.1002/nbm.3712.
  • Simonart T, Degraef C, Andrei G, et al. Iron chelators inhibit the growth and induce the apoptosis of Kaposi’s sarcoma cells and of their putative endothelial precursors. J Invest Dermatol. 2000;115:893–900. doi: 10.1046/j.1523-1747.2000.00119.x
  • Kulp KS, Vulliet PR. Mimosine blocks cell cycle progression by chelating iron in asynchronous human breast cancer cells. Toxicol Appl Pharmacol. 1996;139:356–364. doi: 10.1006/taap.1996.0176
  • D’Mello JPF, Acamovic T. Leucaena leucocephala in poultry nutrition – a review. Anim Feed Sci Tech. 1989;26:1–28. doi: 10.1016/0377-8401(89)90003-5
  • El-Harith BA, Schart Y, Ter Meulen U. Reaction of rats fed on Leucaena leucocephala. Trop Anim Prod. 1979;4:162–167.
  • Hallak M, Vazana L, Shpilberg O, et al. A molecular mechanism for mimosine-induced apoptosis involving oxidative stress and mitochondrial activation. Apoptosis. 2008;13:147–155. doi: 10.1007/s10495-007-0156-7
  • Qiao S-L, Murakami K, Zhao Q, et al. Mimosine-induced apoptosis in C6 glioma cells requires the release of mitochondria-derived reactive oxygen species and p38, JNK activation. Neurochem Res. 2012;37:417–427. doi: 10.1007/s11064-011-0628-6
  • Murakami K, Ohara Y, Haneda M, et al. Prooxidant action of hinokitiol: hinokitiol-iron dependent generation of reactive oxygen species. Basic Clin Pharmacol Toxicol. 2005;97:392–394. doi: 10.1111/j.1742-7843.2005.pto_214.x
  • Murakami K, Haneda M, Yoshino M. Prooxidant action of xanthurenic acid and quinoline compounds: role of transition metals in the generation of reactive oxygen species and enhanced formation of 8-hydroxy-2′-deoxyguanosine in DNA. BioMetals. 2006;19:429–435. doi: 10.1007/s10534-005-4528-6
  • Murakami K, Nagura H, Yoshino M. Permeabilization of yeast cells. Application to study on the regulation of AMP deaminase activity in situ. Anal Biochem. 1980;105:407–413. doi: 10.1016/0003-2697(80)90479-0
  • Yoshino M, Murakami K. Interaction of iron with polyphenolic compounds. Application to antioxidant characterization. Anal Biochem. 1998;257:40–44. doi: 10.1006/abio.1997.2522
  • Yoshino M, Haneda M, Naruse M, et al. Prooxidant activity of flavonoids: copper-dependent strand breaks and the formation of 8-hydroxy-2′-deoxyguanosine in DNA. Mol Genet Metab. 1999;68:468–472. doi: 10.1006/mgme.1999.2901
  • Gardner PR, Fridovich I. Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J. Biol. Chem. 1992;267:8757–8763.
  • Gardner PR. Aconitase: sensitive target and measure of superoxide. Methods Enzymol. 2002;349:9–23. doi: 10.1016/S0076-6879(02)49317-2
  • Krishna MC, Russo A, Mitchel JB, et al. Do nitroxide antioxidants act as scavengers of O2- or as SOD mimics? J. Biol. Chem. 1996;271:26026–26031. doi: 10.1074/jbc.271.42.26026
  • Yasumoto E, Nakano K, Nakayachi T, et al. Cytotoxic activity of deferiprone, maltol and related hydroxyketones against human tumor cell lines. Anticancer Res. 2004;24:755–762.
  • Kalejta RF, Hamlin JL. The dual effect of mimosine on DNA replication. Exp Cell Res. 1997;231:173–183. doi: 10.1006/excr.1996.3444
  • Krude T. Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner. Exp Cell Res. 1999;247:148–159. doi: 10.1006/excr.1998.4342
  • Soedarjo M, Hemscheidt TK, Borthakur D. Mimosine, a toxin present in leguminous trees (Leucaena spp.), induces a mimosine-degrading enzyme activity in some Rhizobium strains. Appl Environ Microbiol. 1994;60:4268–4272. doi: 10.1128/AEM.60.12.4268-4272.1994
  • Hausladen A, Fridovich I. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem. 1994;269:29405–29408.
  • Nedeva TS, Petrova VY, Zamfirova DR, et al. Cu/Zn superoxide dismutase in yeast mitochondria – a general phenomenon. FEMS Microbiol Lett. 2004;230:19–25. doi: 10.1016/S0378-1097(03)00855-3
  • Verniquet F, Gaillard J, Neuburger M, et al. Rapid inactivation of plant aconitase by hydrogen peroxide. Biochem J. 1991;276:643–648. doi: 10.1042/bj2760643
  • Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem. 1989;264:7761–7764.
  • Vasquez-Vivar J, Kalyanaraman B, Kennedy MC. Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. J Biol Chem. 2000;275:14064–14069. doi: 10.1074/jbc.275.19.14064
  • Mikhailov I, Russev G, Anachkova B. Treatment of mammalian cells with mimosine generates DNA breaks. Mutat Res. 2000;459:299–306. doi: 10.1016/S0921-8777(00)00007-0
  • Mikhailov I, Ninova P, Russev G, et al. Iron(II)-mimosine catalyzed cleavage of DNA. Z Naturforsch C. 2000;55:849–851. doi: 10.1515/znc-2000-9-1031
  • Mladenov E, Anachkova B. DNA breaks induction by mimosine. Z Naturforsch C. 2003;58:732–735. doi: 10.1515/znc-2003-9-1024