Publication Cover
Redox Report
Communications in Free Radical Research
Volume 26, 2021 - Issue 1
1,988
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Redox imbalance induced by docetaxel in the neuroblastoma SH-SY5Y cells: a study of docetaxel-induced neuronal damage

, , , , , , & show all

References

  • Mohan A, Poulose R, Gupta T, et al. Impact of chemotherapy on symptom profile, oxidant-antioxidant balance and nutritional status in non-small cell Lung cancer. Lung India. 2017;34(4):336–340.
  • Kaya E, Keskin L, Aydogdu I, et al. Oxidant/antioxidant parameters and their relationship with chemotherapy in Hodgkin’s lymphoma. J Int Med Res. 2005;33(6):687–692.
  • Block KI, Koch AC, Mead MN, et al. Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials. Int J Cancer. 2008;123(6):1227–1239.
  • Monje M, Dietrich J. Cognitive side effects of cancer therapy demonstrate a functional role for adult neurogenesis. Behav Brain Res. 2012;227(2):376–379.
  • Stemmer SM, Stears JC, Burton BS, et al. White matter changes in patients with breast cancer treated with high-dose chemotherapy and autologous bone marrow support. AJNR Am J Neuroradiol. 1994;15(7):1267–1273.
  • Deprez S, Amant F, Yigit R, et al. Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Hum Brain Mapp. 2011;32(3):480–493.
  • Silverman DH, Dy CJ, Castellon SA, et al. Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5-10 years after chemotherapy. Breast Cancer Res Treat. 2007;103(3):303–311.
  • Butterfield DA. The 2013 SFRBM discovery award: selected discoveries from the butterfield laboratory of oxidative stress and its sequela in brain in cognitive disorders exemplified by Alzheimer disease and chemotherapy induced cognitive impairment. Free Radic Biol Med. 2014;74:157–174.
  • Kaiser J, Bledowski C, Dietrich J. Neural correlates of chemotherapy-related cognitive impairment. Cortex . 2014;54:33–50.
  • Tanimukai H, Kanayama D, Omi T, et al. Paclitaxel induces neurotoxicity through endoplasmic reticulum stress. Biochem Biophys Res Commun. 2013;437(1):151–155.
  • Janelsins MC, Kohli S, Mohile SG, et al. An update on cancer- and chemotherapy-related cognitive dysfunction: current status. Semin Oncol. 2011;38(3):431–438.
  • Wang XM, Walitt B, Saligan L, et al. Chemobrain: a critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine. 2015;72(1):86–96.
  • Aluise CD, Miriyala S, Noel T, et al. 2-Mercaptoethane sulfonate prevents doxorubicin-induced plasma protein oxidation and TNF-( release: implications for the reactive oxygen species-mediated mechanisms of chemobrain. Free Radic Biol Med. 2011;50(11):1630–1638.
  • Amin KA, Mohamed BM, El-Wakil MA, et al. Impact of breast cancer and combination chemotherapy on oxidative stress, hepatic and cardiac markers. J Breast Cancer. 2012;15(3):306–312.
  • Gaman AM, Uzoni A, Popa-Wagner A, et al. The role of oxidative stress in Etiopathogenesis of chemotherapy induced cognitive impairment (CICI)-“chemobrain”. Aging Dis. 2016;7(3):307–317.
  • Hutchinson AD, Hosking JR, Kichenadasse G, et al. Objective and subjective cognitive impairment following chemotherapy for cancer: a systematic review. Cancer Treat Rev. 2012;38(7):926–934.
  • McElroy T, Allen AR. A Bibliometric Review of Publications on oxidative stress and chemobrain: 1990-2019. Antioxidants (Basel. 2020;9(5):439.
  • Woodward EJ, Twelves C. Scheduling of taxanes: a review. Curr Clin Pharmacol. 2010;5(3):226–231.
  • Povea-Cabello S, Oropesa-Ávila M, de la Cruz-Ojeda P, et al. Dynamic Reorganization of the Cytoskeleton during apoptosis: The Two Coffins Hypothesis. Int J Mol Sci. 2017;18(11):2393.
  • Ojima I, Lichtenthal B, Lee S, et al. Taxane anticancer agents: a patent perspective. Expert Opin Ther Pat. 2016;26(1):1–20.
  • Ataizi ZS, Ertilav K, Nazıroğlu M. Mitochondrial oxidative stress-induced brain and hippocampus apoptosis decrease through modulation of caspase activity, Ca2+ influx and inflammatory cytokine molecular pathways in the docetaxel-treated mice by melatonin and selenium treatments. Metab Brain Dis. 2019;34(4):1077–1089.
  • Callaghan CK, O’Mara SM. Long-term cognitive dysfunction in the rat following docetaxel treatment is ameliorated by the phosphodiesterase-4 inhibitor, rolipram. Behav Brain Res. 2015;290:84–89.
  • Shi DD, Dong CM, Ho LC, et al. Resveratrol, a natural polyphenol, prevents chemotherapy-induced cognitive impairment: Involvement of cytokine modulation and neuroprotection. Neurobiol Dis. 2018;114:164–173.
  • Ko YH, Kwon SH, Kim SK, et al. Protective effects of 6,7,4’-trihydroxyisoflavone, a major metabolite of daidzein, on 6-hydroxydopamine-induced neuronal cell death in SH-SY5Y human neuroblastoma cells. Arch Pharm Res. 2019;42(12):1081–1091.
  • Wu Q, Shang Y, Shen T, et al. Neuroprotection of miR-214 against isoflurane-induced neurotoxicity involves the PTEN/PI3 K/Akt pathway in human neuroblastoma cell line SH-SY5Y. Arch. Biochem. Biophys. 2019;678:108181.
  • Strober W. Trypan blue Exclusion test of cell viability. Curr. Protoc. Immunol. 2015;111:A3.B.1–A3.B.3.
  • Nencini C, Giorgi G, Micheli L. Protective effect of silymarin on oxidative stress in rat brain. Phytomedicine. 2007;14(2-3):129–135.
  • Johansson LH, Borg LA. A spectrophotometric method for determination of catalase activity in small tissue samples. Anal. Biochem. 1988;174(1):331–336.
  • Ross MA. Determination of ascorbic acid and uric acid in plasma by high-performance liquid chromatography. J. Chromatogr. B. Biomed. Appl. 1994;657(1):197–200.
  • Basu S. Isoprostanes: novel bioactive products of lipid peroxidation. Free Radic Res. 2004;38(2):105–122.
  • Greco A, Minghetti L. Isoprostanes as biomarkers and mediators of oxidative injury in infant and adult central nervous system diseases. Curr Neurovasc Res. 2004;1(4):341–354.
  • Morrow JD, Awad JA, Boss HJ, et al. Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci USA. 1992;89(22):10721–10725.
  • Signorini C, Comporti M, Giorgi G. Ion trap tandem mass spectrometric determination of F2-isoprostanes. J. Mass Spectrom. 2003;38(10):1067–1074.
  • Moretti D, Del Bello B, Allavena G, et al. Calpain-3 impairs cell proliferation and stimulates oxidative stress-mediated cell death in melanoma cells. PLoS One. 2015;10(2):e0117258.
  • Signorini C, Cardile V, Pannuzzo G, et al. Increased isoprostanoid levels in brain from murine model of Krabbe disease. Free Radic. Biol. Med. 2019;139:46–54.
  • Signorini C, De Felice C, Durand T, et al. Relevance of 4-F4t-neuroprostane and 10-F4t-neuroprostane to neurological diseases. Free Radic. Biol. Med. 2018;115:278–287.
  • Cerretani D, Collodel G, Brizzi A, et al. Cytotoxic effects of Cannabinoids on human HT-29 Colorectal Adenocarcinoma cells: different mechanisms of THC, CBD, and CB83. Int J Mol Sci. 2020;21(15):5533.
  • Pascarelli NA, Collodel G, Moretti E, et al. Changes in ultrastructure and cytoskeletal Aspects of human normal and Osteoarthritic Chondrocytes exposed to Interleukin-1β and Cyclical Hydrostatic Pressure. Int J Mol Sci. 2015 Oct 30;16(11):26019–26034.
  • Armitage P, Berry G, Matthews JNS. Statistical methods in medical research, 4th Edition 2002, Blackwell Publishing, Reprint 2002. ISBN: 0-632-05257-0, Printed and bound in the United Kingdom by MPG Books Ltd, Bodmin, Cornwall.
  • Bagnall-Moreau C, Chaudhry S, Salas-Ramirez K, et al. Chemotherapy-Induced cognitive impairment Is associated with increased Inflammation and oxidative damage in the hippocampus. Mol Neurobiol. 2019;56(10):7159–7172.
  • Shi DD, Huang YH, Lai CSW, et al. Ginsenoside Rg1 Prevents chemotherapy-induced cognitive impairment: Associations with Microglia-mediated Cytokines, Neuroinflammation, and Neuroplasticity. Mol. Neurobiol. 2019;56(8):5626–5642.
  • Stanton RA, Gernert KM, Nettles JH, et al. Drugs that target dynamic microtubules: a new molecular perspective. Med. Res. Rev. 2011;31(3):443–481.
  • Lanza-Jacoby S, Cheng G. 3,3’-Diindolylmethane enhances apoptosis in docetaxel-treated breast cancer cells by generation of reactive oxygen species. Pharm. Biol. 2018;56(1):407–414.
  • Bernatz S, Ilina EI, Devraj K, et al. Impact of docetaxel on blood-brain barrier function and formation of breast cancer brain metastases. Exp. Clin. Cancer Res. 2019;38(1):434.
  • Shaw TK, Mandal D, Dey G, et al. Successful delivery of docetaxel to rat brain using experimentally developed nanoliposome: a treatment strategy for brain tumor. Drug Deliv. 2017;24(1):346–357.
  • Kemper EM, Verheij M, Boogerd W, et al. Improved penetration of docetaxel into the brain by Co-administration of Inhibitors of P-glycoprotein. Eur J Cancer. 2004;40(8):1269–1274.
  • Dong X. Current Strategies for brain drug Delivery. Theranostics. 2018;8(6):1481–1493.
  • Ruffels J, Griffin M, Dickenson JM. Activation of ERK1/2, JNK and PKB by hydrogen peroxide in human SH-SY5Y neuroblastoma cells: role of ERK1/2 in H2O2-induced cell death. Eur J Pharmacol. 2004;483(2-3):163–173.
  • Ramkumar M, Rajasankar S, Gobi VV, et al. Neuroprotective effect of Demethoxycurcumin, a natural derivative of Curcumin on rotenone induced neurotoxicity in SH-SY 5Y neuroblastoma cells. BMC Complement Altern. Med. 2017;17(1):217.
  • Mehrabani M, Nematollahi MH, Esmaili M, et al. Protective effect of Hydralazine on a cellular model of Parkinson's disease: a possible role of hypoxia-inducible factor (HIF)-1α. Biochem. Cell Biol. 2020;98(3):405–414.
  • Chung WS, Welsh CA, Barres BA, et al. Do glia drive synaptic and cognitive impairment in disease? Nat Neurosci. 2015;18(11):1539–1545.
  • Riccardi A, Servidei T, Tornesello A, et al. Cytotoxicity of paclitaxel and docetaxel in human neuroblastoma cell lines. Eur J Cancer. 1995;31A(4):494–499.
  • Milne GL, Dai Q, Roberts LJ. The isoprostanes–25 years later. Biochim Biophys Acta. 2015;1851(4):433–445.
  • Labuschagne CF, van den Broek NJF, Postma P, et al. A protocol for Quantifying lipid peroxidation in cellular Systems by F2-isoprostane analysis. PLoS ONE. 2013;8(11):e80935.
  • van ‘t Erve TJ, Kadiiska MB, London SJ, et al. Classifying oxidative stress by F2-isoprostane levels across human diseases: A meta-analysis. Redox Biol. 2017;12:582–599.
  • Morrow JD, Harris TM. Roberts LJ 2nd. Noncyclooxygenase oxidative formation of a series of novel prostaglandins: analytical ramifications for measurement of eicosanoids. Anal Biochem. 1990;184(1):1–10.
  • Bernardo A, Greco A, Levi G, et al. Differential lipid peroxidation, Mn superoxide, and bcl-2 expression contribute to the maturation-dependent vulnerability of oligodendrocytes to oxidative stress. J Neuropathol Exp Neurol. 2003;62(5):509–519.
  • Jarrett SG, Boulton ME. Antioxidant up-regulation and increased nuclear DNA protection play key roles in adaptation to oxidative stress in epithelial cells. Free Radic Biol Med. 2005;38(10):1382–1391.
  • Nandi A, Yan LJ, Jana CK, et al. Role of catalase in oxidative stress- and Age-associated Degenerative diseases. Oxid Med Cell Longev. 2019.
  • Cimini AM, Brunori A, Candi E, et al. Catalase activity in neuroectodermal cell lines and tumours. Clinical Chemistry and Enzymology Communications. 1993;6(1-2):63–67.
  • Awad H, Nolette N, Hinton M, et al. AMPK and FoxO1 regulate catalase expression in hypoxic pulmonary arterial smooth muscle. Pediatr Pulmonol. 2014;49(9):885–897.
  • den Besten HM, Effraimidou S, Abee T. Catalase activity as a biomarker for mild-stress-induced robustness in Bacillus weihenstephanensis. Appl Environ Microbiol. 2013;79(1):57–62.
  • Chen J, Shi X, Chen Y, et al. Neuroprotective effects of chloroform and aqueous fractions of noni juice against t-Butyl hydroperoxide-induced oxidative damage in SH-SY5Y cells. Food Nutr Res. 2018;62:1605.
  • Bauer G, Motz M. The Antitumor effect of Single-domain antibodies Directed Towards membrane-associated catalase and Superoxide Dismutase. Anticancer Res. 2016;36(11):5945–5956.
  • Scheit K, Bauer G. Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis. Anticancer Res. 2014;34(10):5337–5350.
  • Glorieux C, Zamocky M, Sandoval JM, et al. Regulation of catalase expression in healthy and cancerous cells. Free Radic Biol Med. 2015;87:84–97.
  • Escribano A, Amor M, Pastor S, et al. Decreased glutathione and low catalase activity contribute to oxidative stress in children with α-1 antitrypsin deficiency. Thorax. 2015;70(1):82–83.
  • Martensson J, Meister A, 1991. Glutathione deficiency decreases tissue ascorbate levels in newborn rats: ascorbate spares glutathione and protects. Proc Natl Acad Sci USA. 1991;88(11):4656–4660.
  • Goldsworthy TL, Conolly RB, Fransson-Steen R. Apoptosis and cancer risk assessment. Mutat Res. 1996;365(1-3):71–90.
  • Mhaidat NM, Wang Y, Kiejda KA, et al. Docetaxel-induced apoptosis in melanoma cells is dependent on activation of caspase-2. Mol. Cancer Ther. 2007;6(2):752–761.
  • Tao J, Xu J, Chen F, et al. Folate acid-Cyclodextrin/docetaxel induces apoptosis in KB cells via the intrinsic mitochondrial pathway and displays antitumor activity in vivo. Eur. J. Pharm. Sci. 2018;111:540–548.
  • Singh SK, Apata T, Gordetsky JB, et al. Docetaxel combined with thymoquinone induces apoptosis in prostate cancer cells via inhibition of the PI3 K/AKT signaling pathway. Cancers (Basel. 2019;11(9):1390.
  • Tong Y, Wang K, Sheng S, et al. Polydatin ameliorates chemotherapy-induced cognitive impairment (chemobrain) by inhibiting oxidative stress, inflammatory response, and apoptosis in rats. Biosci Biotechnol Biochem. 2020 Jun;84(6):1201–1210.
  • Wang D, Wang B, Liu Y, et al. Protective effects of ACY-1215 against chemotherapy-related cognitive impairment and brain damage in mice. Neurochem Res. 2019 Nov;44(11):2460–2469.