Publication Cover
Redox Report
Communications in Free Radical Research
Volume 27, 2022 - Issue 1
961
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Redox-sensitive small GTPase H-Ras in murine astrocytes, an in vitro study

, , , & ORCID Icon

References

  • Angelova PR, Kasymov V, Christie I, et al. Functional oxygen sensitivity of astrocytes. J Neurosci. 2015;35:10460–10473. doi:10.1523/JNEUROSCI.0045-15.2015.
  • Furth ME, Aldrich TH, Cordon-Cardo C. Expression of ras proto-oncogene proteins in normal human tissues. Oncogene. 1987;1:47–58.
  • Mizoguchi A, Ueda T, Ikeda K, et al. Localization and subcellular distribution of cellular ras gene products in rat brain. Mol Brain Res. 1989;5:31–44. doi:10.1016/0169-328X(89)90015-6.
  • Finkel T. Intracellular redox regulation by the family of small GTPases. Antioxid Redox Signaling. 2006;8:1857–1863. doi:10.1089/ars.2006.8.1857.
  • Cross JV, Templeton DJ. Regulation of signal transduction through protein cysteine oxidation. Antioxid Redox Signaling. 2006;8:1819–1827. doi:10.1089/ars.2006.8.1819.
  • Mitchell L, Hobbs GA, Aghajanian A, et al. Redox regulation of Ras and Rho GTPases: mechanism and function. Antioxid Redox Signaling. 2013;18:250–258. doi:10.1089/ars.2012.4687.
  • Heo J. Redox control of GTPases: from molecular mechanisms to functional significance in health and disease. Antioxid Redox Signaling. 2011;14:689–724. doi:10.1089/ars.2009.2984.
  • Ferro E, Goitre L, Baldini E, et al. Ras GTPases are both regulators and effectors of redox agents. Methods Mol Biol. 2014;1120:55–74. doi:10.1007/978-1-62703-791-4_5.
  • Davis MF, Vigil D, Campbell SL. Regulation of Ras proteins by reactive nitrogen species. Free Radical Biol Med. 2011;51:565–575. doi:10.1016/j.freeradbiomed.2011.05.003.
  • Messina S, De Simone G, Ascenzi P. Cysteine-based regulation of redox-sensitive Ras small GTPases. Redox Biol. 2019;26:101282. doi:10.1016/j.redox.2019.101282.
  • Svegliati S, Cancello R, Sambo P, et al. Platelet-derived growth factor and reactive oxygen species (ROS) regulate Ras protein levels in primary human fibroblasts via ERK1/2. Amplification of ROS and Ras in systemic sclerosis fibroblasts. J Biol Chem. 2005;280:36474–36482. doi:10.1074/jbc.M502851200.
  • Kowluru RA, Kanwar M. Translocation of H-Ras and its implications in the development of diabetic retinopathy. Biochem Biophys Res Commun. 2009;387:461–466. doi:10.1016/j.bbrc.2009.07.038.
  • Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–247. doi:10.1038/35041687.
  • Gough DR, Cotter TG. Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death Dis. 2011;2:e213. doi:10.1038/cddis.2011.96.
  • Rizor A, Pajarillo E, Johnson J, et al. Astrocytic oxidative/nitrosative stress contributes to Parkinson's disease pathogenesis: the dual role of reactive astrocytes. Antioxidants (Basel). 2019;8:265. doi:10.3390/antiox8080265.
  • Morizawa YM, Hirayama Y, Ohno N, et al. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat Commun. 2017;8:28. doi:10.1038/s41467-017-00037-1.
  • Choudhury GR, Ding S. Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol Dis. 2016;85:234–244. doi:10.1016/j.nbd.2015.05.003.
  • Messina S, Di Zazzo E, Moncharmont B. Early and late induction of KRAS and HRAS proto-oncogenes by reactive oxygen species in primary astrocytes. Antioxidants (Basel). 2017;6:48. doi:10.3390/antiox6030048.
  • Messina S, Molinaro G, Bruno V, et al. Enhanced expression of Harvey ras induced by serum deprivation in cultured astrocytes. J Neurochem. 2008;106:551–559. doi:10.1016/j.nbd.2015.05.003.
  • Rubio N. Interferon-gamma protects astrocytes from apoptosis and increases the formation of Ras-GTP complex through ras oncogene family overexpression. Glia. 2001;33:151–159. doi:10.1002/1098-1136(200102)33:2<151::AID-GLIA1014>3.0.CO;2-5.
  • Hashioka S, Klegeris A, Schwab C, et al. Interferon-gamma-dependent cytotoxic activation of human astrocytes and astrocytoma cells. Neurobiol Aging. 2009;30:1924–1935. doi:10.1016/j.neurobiolaging.2008.02.019.
  • Scherz-Shouval R, Elazar Z. Monitoring starvation-induced reactive oxygen species formation. Methods Enzymol. 2009;452:119–130.
  • Lampson BL, Pershing NL, Prinz JA, et al. Rare codons regulate KRas oncogenesis. Curr Biol. 2013;23(1):70–75. doi:10.1016/j.cub.2012.11.031.
  • Johnson CW, Reid D, Parker JA, et al. The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. J Biol Chem. 2017;292:12981–12993. doi:10.1074/jbc.M117.778886.
  • Fu J, Dang Y, Counter C, et al. Codon usage regulates human KRAS expression at both transcriptional and translational levels. J Biol Chem. 2018;293:17929–17940. doi:10.1074/jbc.RA118.004908.
  • Sapkota D, Kater MSJ, Sakers K, et al. Activity dependent translation in astrocytes dynamically alters the proteome of the perisynaptic astrocyte process. Dougherty bioRxiv. 2020. https://doi.org/10.1101/2020.04.08.033027.
  • Saha RN, Pahan K. Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal. 2006;8(5-6):929–947. doi:10.1089/ars.2006.8.929.
  • Baek H, Lim CS, Byun HS, et al. The anti-inflammatory role of extranuclear apurinic/apyrimidinic endonuclease 1/redox effector factor-1 in reactive astrocytes. Mol Brain. 2016;9(1):99. doi:10.1186/s13041-016-0280-9.
  • Pahan K, Sheikh FG, Namboodiri AM, et al. N-acetyl cysteine inhibits induction of NO production by endotoxin or cytokine stimulated rat peritoneal macrophages, C6 glial cells and astrocytes. Free Radical Biol Med. 1998;24:39–48. doi:10.1016/s0891-5849(97)00137-8.
  • Pannu R, Won JS, Khan M, et al. A novel role of lactosylceramide in the regulation of lipopolysaccharide/interferon-γ-mediated inducible nitric oxide synthase gene expression: implications for neuroinflammatory diseases. J Neurosci. 2004;24:5942–5954. doi:10.1523/JNEUROSCI.1271-04.2004.
  • Pahan K, Liu X, McKinney MJ, et al. Expression of a dominant-negative mutant of p21(ras) inhibits induction of nitric oxide synthase and activation of nuclear factor-kappaB in primary astrocytes. J Neurochem. 2000;74:2288–2295. doi:10.1046/j.1471-4159.2000.0742288.x.
  • Heo J, Campbell SL. Mechanism of p21Ras S-nitrosylation and kinetics of nitric oxide-mediated guanine nucleotide exchange. Biochemistry. 2004;43:2314–2322. doi:10.1021/bi035275g.
  • Heo J, Campbell SL. Ras regulation by reactive oxygen and nitrogen species. Biochemistry. 2006;45:2200–2210. doi:10.1021/bi051872m.
  • Eliasson C, Sahlgren C, Berthold CH, et al. Intermediate filament protein partnership in astrocytes. J Biol Chem. 1999;274(34):23996–4006. doi:10.1074/jbc.274.34.23996.
  • Moody LR, Barrett-Wilt GA, Sussman MR, et al. Glial fibrillary acidic protein exhibits altered turnover kinetics in a mouse model of Alexander disease. Biol Chem. 2017;292(14):5814–5824. doi:10.1074/jbc.M116.772020.
  • McCarthy KD, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980 Jun;85(3):890–902. doi:10.1083/jcb.85.3.890.
  • Cahoy JD, Emery B, Kaushal A, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008;28(1):264–78. doi:10.1523/JNEUROSCI.4178-07.2008.
  • Foo LC, Allen NJ, Bushong EA, et al. Development of a method for the purification and culture of rodent astrocytes. Neuron. 2011;71(5):799–811. doi:10.1016/j.neuron.2011.07.022.