Publication Cover
Redox Report
Communications in Free Radical Research
Volume 29, 2024 - Issue 1
467
Views
0
CrossRef citations to date
0
Altmetric
Research Article

TOM5 regulates the mitochondrial membrane potential of alveolar epithelial cells in organizing pneumonia

, , , , , , , & show all

References

  • Yilmaz S, Akinci Ozyurek B, Erdogan Y, et al. Retrospective evaluation of patients with organizing pneumonia: is cryptogenic organizing pneumonia different from secondary organizing pneumonia? Tuberk Toraks. 2017;65(1):1–8.
  • Wang Z, Wu C, Zhu R, et al. Airway invasive aspergillosis with organizing pneumonia: a case report and review of literature. Ann Transl Med. 2020;8(7):504), doi:10.21037/atm.2020.03.162
  • Mueller-Mang C, Grosse C, Schmid K, et al. What every radiologist should know about idiopathic interstitial pneumonias. Radiographics. 2007;27(3):595–615. doi:10.1148/rg.273065130
  • Kim SJ, Lee KS, Ryu YH, et al. Reversed halo sign on high-resolution CT of cryptogenic organizing pneumonia: diagnostic implications. AJR Am J Roentgenol. 2003;180(5):1251–1254. doi:10.2214/ajr.180.5.1801251
  • Kligerman SJ, Franks TJ, Galvin JR. From the radiologic pathology archives: organization and fibrosis as a response to lung injury in diffuse alveolar damage, organizing pneumonia, and acute fibrinous and organizing pneumonia. Radiographics. 2013;33(7):1951–1975. doi:10.1148/rg.337130057
  • Kastelik JA, Greenstone M, McGivern DV, et al. Cryptogenic organising pneumonia. Eur Respir J. 2006;28(6):1291), doi:10.1183/09031936.00100106
  • Araiso Y, Tsutsumi A, Qiu J, et al. Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature. 2019;575(7782):395–401. doi:10.1038/s41586-019-1680-7
  • Vogel P, Read RW, Rehg JE, et al. Cryptogenic organizing pneumonia in Tomm5(-/-) mice. Vet Pathol. 2013;50(1):65–75. doi:10.1177/0300985812450723
  • Pasquali F, Agrimonti C, Pagano L, et al. Nucleo-mitochondrial interaction of yeast in response to cadmium sulfide quantum dot exposure. J Hazard Mater. 2017;324(Pt B):744–752.
  • Kang Y, Fielden LF, Stojanovski D. Mitochondrial protein transport in health and disease. Semin Cell Dev Biol. 2018;76:142–153. doi:10.1016/j.semcdb.2017.07.028
  • Habich M, Salscheider SL, Riemer J. Cysteine residues in mitochondrial intermembrane space proteins: more than just import. Br J Pharmacol. 2019;176(4):514–531. doi:10.1111/bph.14480
  • Budzinska M, Galganska H, Karachitos A, et al. The TOM complex is involved in the release of superoxide anion from mitochondria. J Bioenerg Biomembr. 2009;41(4):361–367. doi:10.1007/s10863-009-9231-9
  • Kanoh S, Kobayashi H, Motoyoshi K. Exhaled ethane: an in vivo biomarker of lipid peroxidation in interstitial lung diseases. Chest. 2005;128(4):2387–2392. doi:10.1378/chest.128.4.2387
  • Travis WD, Costabel U, Hansell DM, et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2013;188(6):733–748. doi:10.1164/rccm.201308-1483ST
  • Williamson JD, Sadofsky LR, Hart SP. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis. Exp Lung Res. 2015;41(2):57–73. doi:10.3109/01902148.2014.979516
  • Huh JW, Kim DS, Oh YM, et al. Is metalloproteinase-7 specific for idiopathic pulmonary fibrosis? Chest. 2008;133(5):1101–1106. doi:10.1378/chest.07-2116
  • Li S, Liu YZ, Huang H, et al. The role of histone deacetylases in the pathogenesis of idiopathic pulmonary fibrosis and cryptogenic organizing pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 2019;42(5):361–366.
  • Pujols L, Xaubet A, Ramirez J, et al. Expression of glucocorticoid receptors and in steroid sensitive and steroid insensitive interstitial lung diseases. Thorax. 2004;59(8):687–693. doi:10.1136/thx.2003.013268
  • Oliveira CC, Fabro AT, Ribeiro SM, et al. Evaluation of the use of transbronchial biopsy in patients with clinical suspicion of interstitial lung disease. J Bras Pneumol. 2011;37(2):168–175. doi:10.1590/S1806-37132011000200006
  • Strieter RM. Mechanisms of pulmonary fibrosis: conference summary. Chest. 2001;120(1 Suppl):77S–85S.
  • Ganzleben I, He GW, Gunther C, et al. PGAM5 is a key driver of mitochondrial dysfunction in experimental lung fibrosis. Cell Mol Life Sci. 2019;76(23):4783–4794. doi:10.1007/s00018-019-03133-1
  • Foster KA, Oster CG, Mayer MM, et al. Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res. 1998;243(2):359–366. doi:10.1006/excr.1998.4172
  • Lieber M, Smith B, Szakal A, et al. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer. 1976;17(1):62–70. doi:10.1002/ijc.2910170110
  • Kuwano K, Hagimoto N, Nakanishi Y. The role of apoptosis in pulmonary fibrosis. Histol Histopathol. 2004;19(3):867–881.
  • Chung WY, Sun JS, Park JH, et al. Epithelial apoptosis as a clinical marker in idiopathic interstitial pneumonia. Respir Med. 2010;104(11):1722–1728. doi:10.1016/j.rmed.2010.05.013
  • Gump JM, Thorburn A. Autophagy and apoptosis: what is the connection? Trends Cell Biol. 2011;21(7):387–392. doi:10.1016/j.tcb.2011.03.007
  • Boya P, Gonzalez-Polo RA, Casares N, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol. 2005;25(3):1025–1040. doi:10.1128/MCB.25.3.1025-1040.2005
  • Takahashi Y, Takahashi S, Yoshimi T, et al. Increases in the mRNA levels of γ-Glutamyltransferase and heme oxygenase-1 in the rat lung after ozone exposure. Biochem Pharmacol. 1997;53(7):1061–1064. doi:10.1016/S0006-2952(97)00104-4
  • Karam H, Hurbain-Kosmath I, Housset B. Antioxidant activity in alveolar epithelial type 2 cells of rats during the development of bleomycin injury. Cell Biol Toxicol. 1998;14(1):13–22. doi:10.1023/A:1007460320109
  • Dasdemir Ilkhan G, Demirci Ucsular F, Celikhisar H, et al. Original article: clinical research. Sarcoidosis Vasc Diffuse Lung Dis. 2021;38(2):e2021020.
  • Liu H, Li Y, Zou Y, et al. Influence of miRNA-30a-5p on pulmonary fibrosis in mice with streptococcus pneumoniae infection through regulation of autophagy by beclin-1. Biomed Res Int. 2021;2021: 9963700.
  • Yamashita M, Saito R, Yasuhira S, et al. Distinct profiles of CD163-positive macrophages in idiopathic interstitial pneumonias. J Immunol Res. 2018;2018: 1436236.
  • Thomas AQ, Lane K, Phillips, 3rd J, et al. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am J Respir Crit Care Med. 2002;165(9):1322–1328.
  • Samarelli AV, Tonelli R, Marchioni A, et al. Fibrotic idiopathic interstitial lung disease: the molecular and cellular Key players. Int J Mol Sci. 2021;22(16):8952.
  • Wells AU, Flaherty KR, Brown KK, et al. Nintedanib in patients with progressive fibrosing interstitial lung diseases-subgroup analyses by interstitial lung disease diagnosis in the INBUILD trial: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Respir Med. 2020;8(5):453–460. doi:10.1016/S2213-2600(20)30036-9
  • Maher TM, Corte TJ, Fischer A, et al. Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med. 2020;8(2):147–157. doi:10.1016/S2213-2600(19)30341-8
  • Vasarmidi E, Sarantoulaki S, Trachalaki A, et al. Investigation of key autophagy-and mitophagy-related proteins and gene expression in BALF cells from patients with IPF and RA-ILD. Mol Med Rep. 2018;18(4):3891–3897.
  • Massaro GD, Gail DB, Massaro D. Lung oxygen consumption and mitochondria of alveolar epithelial and endothelial cells. J Appl Physiol. 1975;38(4):588–592. doi:10.1152/jappl.1975.38.4.588
  • Madala SK, Schmidt S, Davidson C, et al. MEK-ERK pathway modulation ameliorates pulmonary fibrosis associated with epidermal growth factor receptor activation. Am J Respir Cell Mol Biol. 2012;46(3):380–388. doi:10.1165/rcmb.2011-0237OC
  • Zeng M, Huang C, Zheng H, et al. Effects of ghrelin on iNOS-derived NO promoted LPS-induced pulmonary alveolar epithelial A549 cells apoptosis. Cell Physiol Biochem. 2018;49(5):1840–1855. doi:10.1159/000493630
  • Park WH. MAPK inhibitors, particularly the JNK inhibitor, increase cell death effects in H2O2-treated lung cancer cells via increased superoxide anion and glutathione depletion. Oncol Rep. 2018;39(2):860–870.
  • Mimae T, Hagiyama M, Inoue T, et al. Increased ectodomain shedding of lung epithelial cell adhesion molecule 1 as a cause of increased alveolar cell apoptosis in emphysema. Thorax. 2014;69(3):223–231. doi:10.1136/thoraxjnl-2013-203867
  • Kuwano K, Hagimoto N, Maeyama T, et al. Mitochondria-mediated apoptosis of lung epithelial cells in idiopathic interstitial pneumonias. Lab Invest. 2002;82(12):1695–1706. doi:10.1097/01.LAB.0000045084.81853.76
  • Mitra K, Wunder C, Roysam B, et al. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci U S A. 2009;106(29):11960–5. doi:10.1073/pnas.0904875106