491
Views
37
CrossRef citations to date
0
Altmetric
Review

Carbonic anhydrase inhibitors: a review on the progress of patent literature (2011–2016)

&
Pages 947-956 | Received 04 Mar 2016, Accepted 16 Jun 2016, Published online: 11 Jul 2016

References

  • Lindskog S. Structure and mechanism of carbonic anhydrase. Pharmacol Ther. 1997;74(1):1–20.
  • Kannan KK, Notstrand B, Fridborg K, et al. Crystal structure of human erythrocyte carbonic anhydrase B. Three-dimensional structure at a nominal 2.2-A resolution. Proc Natl Acad Sci. 1975;72(1):51–55.
  • Supuran CT. Carbonic anhydrase inhibitors. Bioorg Med Chem Lett. 2010;20(12):3467–3474.
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7(2):168–181.
  • Chegwidden WR, Carter ND, Edwards YH. The carbonic anhydrases: new horizons. Birkhauser: Springer Science & Business Media; 2000.
  • Frost SC, McKenna R. Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications. Dordrecht: Springer Science & Business Media; 2013.
  • Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem. 2015;31(3):345–360.
  • Imtaiyaz Hassan M, Shajee B, Waheed A, et al. Structure, function and applications of carbonic anhydrase isozymes. Bioorg Med Chem. 2013 Mar 15;21(6):1570–1582.
  • Berthelsen PG, Dich-Nielsen JO. Respiratory function and carbonic anhydrase inhibition. Intensive Care Med. 1987;13(5):323–327.
  • Adeva-Andany MM, Fernández-Fernández C, Sánchez-Bello R, et al. The role of carbonic anhydrase in the pathogenesis of vascular calcification in humans. Atherosclerosis. 2015;241(1):183–191.
  • Müller Weg, Schröder HC, Tolba E, et al. Mineralization of bone-related SaOS-2 cells under physiological hypoxic conditions. FEBS J. 2016;283(1):74–87.
  • De Simone G, Supuran CT. Carbonic anhydrase IX: biochemical and crystallographic characterization of a novel antitumor target. Biochim Biophys Acta. 2010;1804(2):404–409.
  • Alterio V, Hilvo M, Di Fiore A, et al. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc Natl Acad Sci. 2009;106(38):16233–16238.
  • Schlue WR, Deitmer JW. Ionic mechanisms of intracellular pH regulation in the nervous system. Ciba Found Symp. 1988;139:47–69.
  • Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov. 2011;10(10):767–777.
  • Pastorekova S, Parkkila S, Pastorek J, et al. Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J Enzyme Inhib Med Chem. 2004;19(3):199–229.
  • Pinard MA, Mahon B, McKenna R. Probing the surface of human carbonic anhydrase for clues towards the design of isoform specific inhibitors. BioMed Res Int. 2015;2015:e453543.
  • Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev. 2003;23(2):146–189.
  • Kannan KK, Ramanadham M, Jones TA. Structure, refinement, and function of carbonic anhydrase isozymes: refinement of human carbonic anhydrase I. Ann N Y Acad Sci. 1984;429:49–60.
  • Avvaru BS, Kim CU, Sippel KH, et al. A short, strong hydrogen bond in the active site of human carbonic anhydrase II. Biochem. 2010;49(2):249–251.
  • Mallis RJ, Poland BW, Chatterjee TK, et al. Crystal structure of S-glutathiolated carbonic anhydrase III. FEBS Lett. 2000;482(3):237–241.
  • Stams T, Nair SK, Okuyama T, et al. Crystal structure of the secretory form of membrane-associated human carbonic anhydrase IV at 2.8-A resolution. Proc Natl Acad Sci. 1996;93(24):13589–13594.
  • Boriack-Sjodin PA, Heck RW, Laipis PJ, et al. Structure determination of murine mitochondrial carbonic anhydrase V at 2.45-A resolution: implications for catalytic proton transfer and inhibitor design. Proc Natl Acad Sci. 1995;92(24):10949–10953.
  • Pilka ES, Kochan G, Oppermann U, et al. Crystal structure of the secretory isozyme of mammalian carbonic anhydrases CA VI: implications for biological assembly and inhibitor development. Biochem Biophys Res Commun. 2012;419(3):485–489.
  • Whittington DA, Waheed A, Ulmasov B, et al. Crystal structure of the dimeric extracellular domain of human carbonic anhydrase XII, a bitopic membrane protein overexpressed in certain cancer tumor cells. Proc Natl Acad Sci. 2001;98(17):9545–9550.
  • Di Fiore A, Monti SM, Hilvo M, et al. Crystal structure of human carbonic anhydrase XIII and its complex with the inhibitor acetazolamide. Proteins. 2009;74(1):164–175.
  • Whittington DA, Grubb JH, Waheed A, et al. Expression, assay, and structure of the extracellular domain of murine carbonic anhydrase XIV: implications for selective inhibition of membrane-associated isozymes. J Biol Chem. 2004;279(8):7223–7228.
  • Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235–242.
  • Moeker J, Mahon BP, Bornaghi LF, et al. Structural insights into carbonic anhydrase IX isoform specificity of carbohydrate-based sulfamates. J Med Chem. 2014;57(20):8635–8645.
  • Mahon BP, Lomelino CL, Ladwig J, et al. Mapping selective inhibition of the cancer-related carbonic anhydrase IX using structure-activity relationships of Glucosyl-based sulfamates. J Med Chem. 2015;58(16):6630–6638.
  • Mahon BP, Hendon AM, Driscoll JM, et al. Saccharin: a lead compound for structure-based drug design of carbonic anhydrase IX inhibitors. Bioorg Med Chem. 2015;23(4):849–854.
  • Tu CK, Silverman DN, Forsman C, et al. Role of histidine 64 in the catalytic mechanism of human carbonic anhydrase II studied with a site-specific mutant. Biochem. 1989;28(19):7913–7918.
  • Duda D, Tu C, Qian M, et al. Structural and kinetic analysis of the chemical rescue of the proton transfer function of carbonic anhydrase II. Biochem. 2001;40(6):1741–1748.
  • Fisher Z, Hernandez Prada JA, Tu C, et al. Structural and kinetic characterization of active-site histidine as a proton shuttle in catalysis by human carbonic anhydrase II. Biochem. 2005;44(4):1097–1105.
  • Fisher SZ, Maupin CM, Budayova-Spano M, et al. Atomic crystal and molecular dynamics simulation structures of human carbonic anhydrase II: insights into the proton transfer mechanism. Biochem. 2007;46(11):2930–2937.
  • Aggarwal M, Kondeti B, Tu C, et al. Structural insight into activity enhancement and inhibition of H64A carbonic anhydrase II by imidazoles. IUCrJ. 2014;1(Pt 2):129–135.
  • McBain EH. Diagnosis and treatment of glaucoma; a review of recent developments. Calif Med. 1954;81(3):231–234.
  • Swenson ER. New insights into carbonic anhydrase inhibition, vasodilation, and treatment of hypertensive-related diseases. Curr Hypertens Rep. 2014;16(9):467.
  • Kemp G, Kemp D. Diuretics. Am J Nurs. 1978;78(6):1006–1010.
  • Ruusuvuori E, Huebner AK, Kirilkin I, et al. Neuronal carbonic anhydrase VII provides GABAergic excitatory drive to exacerbate febrile seizures. EMBO J. 2013;32(16):2275–2286.
  • Pinard MA, Boone CD, Rife BD, et al. Structural study of interaction between brinzolamide and dorzolamide inhibition of human carbonic anhydrases. Bioorg Med Chem. 2013;21(22):7210–7215.
  • Ivanova J, Leitans J, Tanc M, et al. X-ray crystallography-promoted drug design of carbonic anhydrase inhibitors. Chem Commun. 2015;51(33):7108–7111.
  • Kanski JJ. Carbonic anhydrase inhibitors and osmotic agents in glaucoma. Br J Ophthalmol. 1968;52(8):642–643.
  • Supuran CT. Drug interaction considerations in the therapeutic use of carbonic anhydrase inhibitors. Expert Opin Drug Metab Toxicol. 2016;12(4):423–431.
  • Mincione F, Scozzafava A, Supuran CT. The development of topically acting carbonic anhydrase inhibitors as antiglaucoma agents. Curr Pharm Des. 2008;14(7):649–654.
  • Sugrue MF. Pharmacological and ocular hypotensive properties of topical carbonic anhydrase inhibitors. Prog Retin Eye Res. 2000;19(1):87–112.
  • Maren TH. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967;47(4):595–781.
  • Poulsen S-A, Wilkinson BL, Innocenti A, et al. Inhibition of human mitochondrial carbonic anhydrases VA and VB with para-(4-phenyltriazole-1-yl)-benzenesulfonamide derivatives. Bioorg Med Chem Lett. 2008;18(16):4624–4627.
  • More RH, McMillan GC, Duff GL. The pathology of sulfonamide allergy in man. Am J Pathol. 1946;22(4):703–735.
  • Wulf NR, Matuszewski KA. Sulfonamide cross-reactivity: is there evidence to support broad cross-allergenicity? Am J Health-Syst Pharm. 2013;70(17):1483–1494.
  • Aggarwal M, McKenna R. Update on carbonic anhydrase inhibitors: a patent review (2008-2011). Expert Opin Ther Pat. 2012;22(8):903–915.
  • Schmidl D, Schmetterer L, Garhöfer G, et al. Pharmacotherapy of glaucoma. J Ocul Pharmacol Ther. 2015;31(2):63–77.
  • Cholkar K, Trinh HM, Pal D, et al. Discovery of novel inhibitors for the treatment of glaucoma. Expert Opin Drug Discov. 2015;10(3):293–313.
  • Karavas E, Koutris E, Samara V, et al. Ophthalmic pharmaceutical composition containing a carbonic anhydrase inhibitor and method for the preparation thereof. US2015080385. 2015.
  • Kim NN, Mcvicar WK, Mccauley TG. Combination compositions of adenosine a1 agonists and carbonic anhydrase inhibitors for reducing intraocular pressure. CN102933220. 2013.
  • Combination of adenosine derivative and carbonic anhydrase inhibitor and beta-receptor blocker. JP2012250949. 2012.
  • Yadav RP, Kadam SN, Bhagit AA, et al. Method for the synthesis of bifunctional cerium oxide nanoparticle with enhanced antioxidant and carbonic anhydrase inhibitory activity. IN1948MU2015. 2015.
  • Ivanov S, Liao S-Y, Ivanova A, et al. Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol. 2001;158(3):905–919.
  • Chia SK, Wykoff CC, Watson PH, et al. Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma. J Clin Oncol. 2001;19(16):3660–3668.
  • Chamie K, Klöpfer P, Bevan P, et al. Carbonic anhydrase-IX score is a novel biomarker that predicts recurrence and survival for high-risk, nonmetastatic renal cell carcinoma: data from the phase III ARISER clinical trial. Urol Oncol Semin Orig Investig. 2015;33(5):204.e25-204.e33.
  • Huang W-J, Jeng Y-M, Lai H-S, et al. Expression of hypoxic marker carbonic anhydrase IX predicts poor prognosis in resectable hepatocellular carcinoma. PLoS ONE. 2015;10(3):e0119181.
  • Kobayashi M, Matsumoto T, Ryuge S, et al. CAXII is a sero-diagnostic marker for lung cancer. PLoS ONE. 2012;7(3):e33952.
  • Yoo CW, Nam B-H, Kim J-Y, et al. Carbonic anhydrase XII expression is associated with histologic grade of cervical cancer and superior radiotherapy outcome. Radiat Oncol. 2010;5:101.
  • Gieling RG, Williams KJ. Carbonic anhydrase IX as a target for metastatic disease. Bioorg Med Chem. 2013;21(6):1470–1476.
  • Sedlakova O, Svastova E, Takacova M, et al. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front Physiol. 2014;4:400.
  • Li Y, Tu C, Wang H, et al. Catalysis and pH control by membrane-associated carbonic anhydrase IX in MDA-MB-231 breast cancer cells. J Biol Chem. 2011;286(18):15789–15796.
  • Mahon BP, Pinard MA, McKenna R. Targeting carbonic anhydrase IX activity and expression. Mol. 2015;20(2):2323–2348.
  • McDonald PC, Winum J-Y, Supuran CT, et al. Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget. 2012;3(1):84–97.
  • Jogaitė V, Zubrienė A, Michailovienė V, et al. Characterization of human carbonic anhydrase XII stability and inhibitor binding. Bioorg Med Chem. 2013;21(6):1431–1436.
  • Chiche J, Brahimi-Horn MC, Pouysségur J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med. 2010;14(4):771–794.
  • Chen X, Qian Y, Wu S. The warburg effect: evolving interpretations of an established concept. Free Radic Biol Med. 2015;79:253–263.
  • Gonzalez CD, Alvarez S, Ropolo A, et al. Autophagy, Warburg, and Warburg reverse effects in human cancer. BioMed Res Int. 2014;2014:926729.
  • Mimeault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med. 2013;17(1):30–54.
  • Chiche J, Ilc K, Laferrière J, et al. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 2009;69(1):358–368.
  • Lou Y, McDonald PC, Oloumi A, et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 2011;71(9):3364–3376.
  • Brynda J, Cigler P, Gruner B, et al. Carbonic anhydrase inhibitors and method of their production. US2014303390. 2014.
  • Zimmerman C, Babich JW, Joyal JL, et al. Inhibitors of carbonic anhydrase IX. EP2823826. 2015.
  • Ebbesen P, Supuran CT, Scozzafava A, et al. Carbonic anhydrase inhibitors. US2013053392. 2013.
  • Supuran C, Scozzafava A, Masini E, et al. Carbonic anhydrase inhibitor comprising a dithiocarbamate. WO2013050426. 2013.
  • Lambin P, Winum J-Y. Dual action carbonic anhydrase inhibitors. WO2015025283. 2015.
  • Dubois L, Lambin P, Winum J-Y, et al. Cancer targeting using carbonic anhydrase isoform IX inhibitors. WO2012087115. 2012.
  • Supuran C, Dedhar S, Carta F, et al. Carbonic anhydrase inhibitors with antimetastatic activity. CA2856812. 2012.
  • Li Y, Wang H, Oosterwijk E, et al. Antibody-specific detection of CAIX in breast and prostate cancers. Biochem Biophys Res Commun. 2009;386(3):488–492.
  • Ahlskog JKJ, Schliemann C, Mårlind J, et al. Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours. Br J Cancer. 2009;101(4):645–657.
  • Oosterwijk E, Ruiter DJ, Hoedemaeker PJ, et al. Monoclonal antibody G 250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney. Int J Cancer. 1986;38(4):489–494.
  • Marasco WA, Lo A, Xu C. Carbonic anhydrase IX (G250) antibodies and methods of use thereof. US2013336923. 2013.
  • Marasco WA, Lo A, Xu C. Carbonic anhydrase IX (G250) antibodies and methods of use thereof. WO2007065027. 2007.
  • Zeidler R, Battke C, Kremmer E, et al. Novel antibody to a carbonic anhydrase. AU2011250022. 2013.
  • Renner C, Bauer S, Plesko M, et al. Antibodies directed against carbonic anhydrase IX and methods and uses thereof. WO2011139375. 2011.
  • Pini R, Ratto F, Tatini F, et al. Assembly comprising an absorber of near infrared (nir) light covalently linked to an inhibitor of carbonic anhydrase. US2016015661. 2016.
  • Babich JW, Zimmerman C, Joyal JL, et al. Metal complexes of poly(carboxyl)amine-containing ligands having an affinity for carbonic anhydrase IX. US2016009664. 2016.
  • Kolb H, Chen G, Padgett H, et al. Development of molecular imaging probes for carbonic anhydrase-IX using click chemistry. EP2468734. 2012.
  • Najarian T, Tam PY, Wilson LF, et al. Treatment of pulmonary hypertension with carbonic anhydrase inhibitors. US2016015730. 2016.
  • Wang X, Schröder HC, Schlossmacher U, et al. Modulation of the initial mineralization process of SaOS-2 cells by carbonic anhydrase activators and polyphosphate. Calcif Tissue Int. 2014;94(5):495–509.
  • Müller WEG, Schröder HC, Wang X. Modulator of bone mineralization based on a combination of polyphosphate/carbonate and carbonic anhydrase activators. WO2015063249. 2015.
  • Murakami H, Yamanishi H, Onji M. Method of inducing immune tolerance comprising administering carbonic anhydrase I. US2014170173. 2014.
  • Mori K, Yamanishi H, Ikeda Y, et al. Oral administration of carbonic anhydrase I ameliorates murine experimental colitis induced by Foxp3−CD4+CD25− T cells. J Leukoc Biol. 2013;93(6):963–972.
  • Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. BioMed Res Int. 2014;2014:e967826.
  • Corripio GH, Vinas JL, Martinez AS. Use of carbonic anhydrase II for producing a drug. US2013101565. 2013.
  • Cabiscol E, Levine RL, Carbonic Anhydrase III. Oxidative modification in vivo and loss of phosphate activity during aging. J Biol Chem. 1995;270(24):14742–14747.
  • Rodriguez VC. Therapeutic and prophylactic uses of cell specific carbonic anhydrase enzymes in treating aging disorders due to oxidative stress and as growrh factors of stem cells. US2011091576. 2011.
  • Aggarwal M, Kondeti B, McKenna R. Insights towards sulfonamide drug specificity in α-carbonic anhydrases. Bioorg Med Chem. 2013;21(6):1526–1533.
  • Supuran CT, Scozzafava A, Conway J. Carbonic anhydrase: its inhibitors and activators. Boca Raton (FL): CRC Press; 2004.
  • Supuran CT, Winum J-Y. Drug design of zinc-enzyme inhibitors: functional, structural, and disease applications. Hoboken (NJ): John Wiley & Sons; 2009.
  • Bozdag M, Ferraroni M, Nuti E, et al. Combining the tail and the ring approaches for obtaining potent and isoform-selective carbonic anhydrase inhibitors: solution and X-ray crystallographic studies. Bioorg Med Chem. 2014;22(1):334–340.
  • Anderson AC. The process of structure-based drug design. Chem Biol. 2003;10(9):787–797.
  • Mandal S, Moudgil M, Mandal SK. Rational drug design. Eur J Pharmacol. 2009;625(1–3):90–100.
  • Oprea TI, Davis AM, Teague SJ, et al. Is there a difference between leads and drugs? A historical perspective. J Chem Inf Comput Sci. 2001;41(5):1308–1315.
  • Walters WP, Ajay MMA. Recognizing molecules with drug-like properties. Curr Opin Chem Biol. 1999;3(4):384–387.
  • Leeson P. Drug discovery: chemical beauty contest. Nature. 2012;481(7382):455–456.
  • Lomelino CL, Mahon BP, McKenna R, et al. Kinetic and X-ray crystallographic investigations on carbonic anhydrase isoforms I, II, IX and XII of a thioureido analog of SLC-0111. Bioorg Med Chem. 2016;24(5):976–981.
  • Congiu C, Onnis V, Deplano A, et al. Synthesis and carbonic anhydrase I, II, IX and XII inhibitory activity of sulfamates incorporating piperazinyl-ureido moieties. Bioorg Med Chem. 2015;23(17):5619–5625.
  • Congiu C, Onnis V, Deplano A, et al. Synthesis of sulfonamides incorporating piperazinyl-ureido moieties and their carbonic anhydrase I, II, IX and XII inhibitory activity. Bioorg Med Chem Lett. 2015;25(18):3850–3853.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.