279
Views
13
CrossRef citations to date
0
Altmetric
Review

Detection and treatment of Trypanosoma cruzi: a patent review (2011-2015)

, &
Pages 993-1015 | Received 11 Mar 2016, Accepted 01 Jul 2016, Published online: 19 Jul 2016

References

  • García Liñares G, Ravaschino EL, Rodriguez JB. Progresses in the field of drug design to combat tropical protozoan parasitic diseases. Curr Med Chem. 2006;13:335–360.
  • Urbina JA. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Tropica. 2010;115:55–68.
  • Bern C. Chagas disease. N Engl J Med. 2015;373:456–666.
  • Brener Z. Biology of Trypanosoma cruzi. Annu Rev Microbiol. 1973;27:347–382.
  • Bustamante JM, Tarleton RL. Potential new clinical therapies for Chagas disease. Expert Rev Clin Pharmacol. 2014;7:317–325.
  • Urbina JA, Docampo R. Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol. 2003;19:495–501.
  • Pinto Dias JC, Rodrigues Coura J, Shikanai Yasuda MA. The present situation, challenges, and perspectives regarding the production and utilization of effective drugs against human Chagas disease. Rev Soc Bras Med Trop. 2014;47:123–125.
  • Hotez PJ, Dumonteil E, Cravioto MB, et al. An unfolding tragedy of Chagas disease in North America. PLoS Negl Trop Dis. 2013;7:e2300.
  • Ravaschino EL, Docampo R, Rodriguez JB. Design, synthesis and biological evaluation of phosphinopeptides against Trypanosoma cruzi targeting trypanothione biosynthesis. J Med Chem. 2006;49:426–435.
  • Docampo R. Sensitivity of parasites to free radical damage by antiparasitic drugs. Chem Biol Interact. 1990;73:1–27.
  • Urbina JA. Chemotherapy of Chagas disease. Curr Pharm Des. 2002;8:287–295.
  • de Castro SL, Batista DG, Batista MM, et al. Experimental chemotherapy for Chagas disease: a morphological, biochemical, and proteomic overview of potential Trypanosoma cruzi targets of amidines derivatives and naphthoquinones. Mol Biol Int. 2011;2011:306928.
  • Docampo R, Moreno SNJ. Biochemical toxicology of antiparasitic compounds used in the chemotherapy and chemoprophylaxis of American trypanosomiaisis (Chagas’ disease). Rev Biochem Toxicol. 1985;7:159–204.
  • Buckner FS, Urbina JA. Recent developments in sterol 14-demethylase inhibitors for Chagas disease. Int J Parasitol Drugs Drug Resist. 2012;2:236–242.
  • Lepesheva GI, Hargrove TY, Anderson S, et al. Structural insights into inhibition of sterol 14α-demethylase in the human pathogen Trypanosoma cruzi. J Biol Chem. 2010;285:25582–25590.
  • Lepesheva GI, Villalta F, Waterman MR. Targeting Trypanosoma cruzi sterol 14α-demethylase (CYP51). Adv Parasitol. 2011;75:65–87.
  • Docampo R, Moreno SN. The acidocalcisome as a target for chemotherapeutic agents in protozoan parasites. Curr Pharm Des. 2008;14:882–888.
  • Docampo R, Moreno SNJ. Acidocalcisomes. Cell Calcium. 2011;50:113–119.
  • Krauth-Siegel RL, Comini MA. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochimica Biophysica Acta. 2008;1780:1236–1248.
  • Cazzulo JJ. Proteinases of Trypanosoma cruzi: potential targets for the chemotherapy of Chagas disease. Curr Top Med Chem. 2002;2:1261–1271.
  • Alvarez VE, Niemirowicz GT, Cazzulo JJ. Metacaspases, autophagins and metallocarboxypeptidases: potential new targets for chemotherapy of the trypanosomiases. Curr Med Chem. 2013;20:3069–3077.
  • Matsui M, Jh F, Walling LL. Leucine aminopeptidases: diversity in structure and function. Biol Chem. 2006;387:1535–1544.
  • Yokoyama K, Gillespie JR, Van Voorhis WC, et al. Protein geranylgeranyltransferase-I of Trypanosoma cruzi. Mol Biochem Parasitol. 2008;157:32–43.
  • Urbina JA. New insights in Chagas’ disease treatment. Drugs Future. 2010;35:409–419.
  • González M, Cerecetto H. Quinoxaline derivatives: a patent review (2006-present). Expert Opin Ther Pat. 2012;22:1289–1302.
  • Duschak VG, Couto AS. Targets and patented drugs for chemotherapy of Chagas disease. Front Anti-Infective Drug Discov. 2010;1:323–408.
  • Paes LS, Mantilla BS, Barison MJ, et al. The uniqueness of the Trypanosoma cruzi mitochondrion: opportunities to target new drugs against Chagas disease. Curr Pharm Des. 2011;17:2074–2099.
  • Croft SL. RSC drug discovery series, neglected diseases and drug discovery. Drugs Kinetoplastid Diseases – Current Situation Challenges. 2012;14:134–158.
  • Jacobs RT. RSC drug discovery series, neglected diseases and drug discovery. Drugs Kinetoplastid Dis. 2012;14:159–202.
  • Urbina JA. Parasitological cure of Chagas disease: is it possible? Is it relevant? Mem Inst Oswaldo Cruz. 1999;94(Suppl 1):349–355.
  • Docampo R, Moreno SNJ. The acidocalcisome as a target for chemotherapeutic agents in protozoan parasites. Curr Pharm Des. 2008;14:882–888.
  • Gelb MH, Van Voorhis WC, Buckner FS, et al. Protein farnesyl and N-myristoyl transferases: piggy-back medicinal chemistry targets for the development of antitrypanosomatid and antimalarial therapeutics. Mol Biochem Parasitol. 2003;726:155–163.
  • Lepesheva GI, Zaitseva NG, Nes WD, et al. CPY51 from Trypanosoma cruzi: a phyla-specific residue in the B′ helix defines substrates preferences. J Biol Chem. 2006;281:3577–3585.
  • Urbina JA, Vivas J, Lazardi K, et al. Antiproliferative effects of Δ24(25) sterol methyl transferase inhibitors on Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Chemotherapy. 1996;42:294–307.
  • Parish EJ, Nes WD. Synthesis of new epiminoisopentenoids. Synth Commun. 1988;18:221–226.
  • Vivas J, Urbina JA, de Souza W. Ultrastructural alterations in Trypanosoma (Schizotrypanum) cruzi induced by Δ24(25) sterol methyl transferase inhibitors and their combinations with ketoconazole. Int J Antimicrob Agents. 1997;8:1–6.
  • Urbina JA, Payares G, Molina J, et al. Cure of short- and long-term experimental Chagas’ disease using D0870. Science. 1996;273:969–971.
  • Brener Z, Cançado JR, Galvao LM, et al. An experimental and clinical assay with ketoconazole in the treatment of Chagas disease. Mem Inst Oswaldo Cruz. 1993;88:149–153.
  • Heeres J, Backx LJJ, Mostmans JH, et al. Antimycotic imidazoles. Part 4. Synthesis and antifungal activity of ketoconazole, a new potent orally active broad-spectrum antifungal agent. J Med Chem. 1979;22:1003–1005.
  • Ryley JF, McGregor S, Wilson RG. Activity of ICI 195,739, a novel, orally active bistriazole in rodent models of fungal and protozoal infections. Ann N Y Acad Sci. 1988;544:310–328.
  • Pfaller MA, Messer S, Jones RN. Activity of a New Triazole, Sch 56592, Compared with those of four other antifungal agents tested against clinical isolates of Candida spp. and Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1997;41:233–235.
  • Urbina JA, Payares G, Contreras LM, et al. Antiproliferative effects and mechanism of action of SCH 56592 against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Antimicrob Agents Chemother. 1998;42:1771–1777.
  • Urbina JA, Payares G, Sanoja C, et al. In vitro and in vivo activities of ravuconazole on Trypanosoma cruzi, the causative agent of Chagas disease. Int J Antimicrob Agents. 2003;21:27–38.
  • Lepesheva GI. Design or screening of drugs for the treatment of Chagas disease: what shows the most promise? Expert Opin Drug Discov. 2013;8:1479–1489.
  • Ueda Y, Matiskella JD, Golik J, et al. Phosphonooxymethyl prodrugs of the broad spectrum antifungal azole, ravuconazole: synthesis and biological properties. Bioorg Med Chem Lett. 2003;13:3669–3672.
  • Ahmed SA, Kloezen W, Duncanson F. Madurella mycetomatis is highly susceptible to ravuconazole. PLoS Negl Trop Dis. 2014;8:e2942.
  • Ueki Y Encapsulated formulation of ravuconazole methyl phosphate. WO2013157584; 2013.
  • Urbina JA, Payares G, Sanoja C, et al. Parasitological cure of acute and chronic experimental Chagas disease using the long-acting experimental triazole TAK-187. Activity against drug-resistant Trypanosoma cruzi strains. Int J Antimicrob Agents. 2003;21:39–48.
  • Suryadevara PK, Olepu S, Lockman JW, et al. Structurally simple inhibitors of lanosterol 14α-demethylase are efficacious in a rodent model of acute Chagas disease. J Med Chem. 2009;52:3703–3715.
  • Suryadevara PK, Racherla KK, Olepu S, et al. Dialkylimidazole inhibitors of Trypanosoma cruzi sterol 14α-demethylase as anti-Chagas disease agents. Bioorg Med Chem Lett. 2013;23:6492–6499.
  • Kraus JM, Tatipaka HB, McGuffin SA, et al. Second generation analogues of the cancer drug clinical candidate tipifarnib for anti-Chagas disease drug discovery. J Med Chem. 2010;53:3887–3898.
  • Buckner FS, Bahia MT, Suryadevara PK, et al. Pharmacological characterization, structural studies, and in vivo activities of anti-Chagas disease lead compounds derived from tipifarnib. Antimicrob Agents Chemother. 2012;56:4914–4921.
  • Lepesheva GI, Ott RD, Hargrove TY, et al. Sterol 14 α-demethylase as a potential target for antitrypanosomal therapy: enzyme inhibition and parasite cell growth. Chem Biol. 2007;14:1283−1293.
  • Villalta F, Dobish MC, Nde PN, et al. VNI cures acute and chronic experimental Chagas disease. J Infect Dis. 2013;208:504−511.
  • Friggeri L, Hargrove TY, Rachakonda G, et al. Structural basis for rational design of inhibitors targeting Trypanosoma cruzi sterol 14α-demethylase: two regions of the enzyme molecule potentiate its inhibition. J Med Chem. 2014;57:6704–6717.
  • Clayton J. Chagas disease: pushing through the pipeline. Nature. 2010;465:S12–S15.
  • Urbina JA, Lazardi K, Aguirre T, et al. Antiproliferative effects and mechanism of action of ICI 195,739, a novel bis-triazole derivative, on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother. 1991;35:730–735.
  • Gokhale VM, Kulkarni VM. Understanding the antifungal activity of terbinafine analogues using quantitative structure-activity relationship (QSAR) models. Bioorg Med Chem. 2000;8:2487–2499.
  • Gerpe A, Odreman-Nuñez I, Draper P, et al. Heteroallyl-containing 5-nitrofuranes as new anti-Trypanosoma cruzi agents with a dual mechanism of action. Bioorg Med Chem. 2008;16:569–577.
  • Urbina JA, Concepción JL, Rancel S, et al. Squalene synthase as a chemotherapeutic target in Trypanosoma cruzi and Leishmania mexicana. Mol Biochem Parasitol. 2002;125:35–45.
  • Pandit J, Danley DE, Schulte GK, et al. Crystal structure of human squalene synthase. A key enzyme in cholesterol biosynthesis. J Biol Chem. 2000;275:30610–30617.
  • Brown GR, Clarke DS, Foubister AJ, et al. Synthesis and activity of a novel series of 3-biarylquinuclidine squalene synthase inhibitors. J Med Chem. 1996;39:2971–2979.
  • Cinque GM, Szajnman SH, Zhong L, et al. Structure-activity relationship of new growth inhibitors of Trypanosoma cruzi. J Med Chem. 1998;41:1540–1554.
  • Urbina JA, Concepcion JL, Montalvetti A, et al. Mechanism of action of 4-phenoxyphenoxy derivatives against Trypanosoma cruzi, the causative agent of Chagas disease. Antimicrob Agents Chemother. 2003;47:2047–2050.
  • García Liñares G, Gismondi S, Osa Codesido N, et al. Fluorine-containing aryloxyethyl thiocyanate derivatives are potent inhibitors of Trypanosoma cruzi and Toxoplasma gondii proliferation. Bioorg Med Chem Lett. 2007;17:5068–5071.
  • Chao MN, Exeni Matiuzzi C, Storey M, et al. Aryloxyethyl thiocyanates are potent growth inhibitors of Trypanosoma cruzi and Toxoplasma gondii. ChemMedChem. 2015;10:1094–1108.
  • Lin F–Y, Liu Y–L, Li K, et al. Head-to-head prenyl tranferases: anti-infective drug targets. J Med Chem. 2012;55:4367−4372.
  • Shang N, Li Q, Ko TP, et al. Squalene synthase as a target for Chagas disease therapeutics. PLoS Pathog. 2014;10:e1004114.
  • Kramer SJ, Law JH. Synthesis and transport of juvenile hormones in insects. Acc Chem Res. 1980;13:297–303.
  • Perlawagora-Szumlewicz A, Petana WP, Figueiredo MJ. The evaluation of host efficiency and vector potential of laboratory juvenilized vector of Chagas’ disease. I – Effects of developmental changes induced by juvenile hormone analogues in Pantrongylus megistus (Hemiptera-Reduviidae) on the susceptibility of insects to gut infection with Trypanosoma cruzi. Rev Inst Med Trop. 1975;17:97–102.
  • Rodriguez JB, Zhong L, Docampo R, et al. Growth inhibitory effect of juvenile hormone analogues on epimastigotes of Trypanosoma cruzi. Bioorg Med Chem Lett. 1998;8:3257–3260.
  • Schvartzapel AJ, Zhong L, Docampo R, et al. Design, synthesis and biological evaluation of new growth inhibitors of Trypanosoma cruzi (epimastigotes). J Med Chem. 1997;40:2314–2322.
  • Urbina JA, Concepcion JL, Caldera A, et al. In vitro and in vivo activities of E5700 and ER-119884, two novel orally active squalene synthase inhibitors, against Trypanosoma cruzi. Antimicrob Agents Chemother. 2004;48:2379–2387.
  • Sacksteder KA, Protopopova M, Barry CE III, et al. Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol. 2012;7:823–837.
  • Zumla A, Nahid P, Cole ST. Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov. 2013;12:388–404.
  • Li K, Schurig-Briccio LA, Feng X, et al. Multitarget drug discovery for tuberculosis and other infectious diseases. J Med Chem. 2014;57:3126−3139.
  • Veiga-Santos P, Li K, Lameira L, et al. SQ109, a new drug lead for Chagas disease. Antimicrob Agents Chemother. 2015;59:1950–1961.
  • Oldfield E, Li K Anti-microbial compounds and compositions. WO 2015035234 A2; 2015.
  • Florin-Christensen M, Florin-Christensen J, Garin C, et al. Inhibition of Trypanosoma cruzi growth and sterol biosynthesis by lovastatin. Biochem Biophys Res Comm. 1990;166:1441–1445.
  • Concepción JL, González-Pacanowska D, Urbina JA. 3-Hydroxy-3-methyl-glutaryl-CoA reductase in Trypanosoma (Schizotrypanum) cruzi: subcellular localization and kinetic properties. Arch Biochem Biophys. 1998;352:114–120.
  • Urbina JA, Lazardi K, Marchan E, et al. Mevinolin (lovastatin) potentiates the antiproliferative effects of ketoconazole and terbinafine against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Antimicrob Agents Chemother. 1993;37:580–591.
  • Goad LJ, Berens RL, Marr JJ, et al. The activity of ketoconazole and other azoles against Trypanosoma cruzi: biochemistry and chemotherapeutic action in vitro. Mol Biochem Parasitol. 1989;32:179–189.
  • Montalvetti A, Bailey BN, Martin MB, et al. Bisphosphonates are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase. J Biol Chem. 2001;276:33930–33937.
  • Rodriguez JB, Falcone BN, Szajnman SH. Approaches for designing new potent inhibitors of farnesyl pyrophosphate synthase. Expert Op Drug Discovery. 2016;11:307–320.
  • Roelofs AJ, Thompson K, Ebetino FH, et al. Bisphosphonates: molecular mechanisms of action and effects on bone cells, monocytes and macrophages. Curr Pharm Des. 2010;16:2950–2960.
  • Russell RGG. Bisphosphonates: the first 40 years. Bone. 2011;49:2–19.
  • Martin MB, Grimley JS, Lewis JC, et al. Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: a potential route to chemotherapy. J Med Chem. 2001;44:909–916.
  • Bouzahzah B, Jelicks LA, Morris SA, et al. Risedronate in the treatment of murine Chagas’ disease. Parasitol Res. 2005;96:184–187.
  • Rosso VS, Szajnman SH, Malayil L, et al. Synthesis and biological evaluation of new 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase. Bioorg Med Chem. 2011;19:2211–2217.
  • Szajnman SH, García Liñares GE, Li Z–H, et al. Synthesis and biological evaluation of 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase. Bioorg Med Chem. 2008;16:3283–3290.
  • Aripirala S, Szajnman SH, Jakoncic J, et al. Design, synthesis, calorimetry and crystallographic analysis of 2-alkylaminoethyl-1,1-bisphosphonates as inhibitors of Trypanosoma cruzi farnesyl diphosphate synthase. J Med Chem. 2012;55:6445–6454.
  • Ferrer-Casal M, Li C, Galizzi M, et al. New insights into molecular recognition of 1,1-bisphosphonic acids by farnesyl diphosphate synthase. Bioorg Med Chem. 2014;22:398–405.
  • Szajnman SH, Bailey BN, Docampo R, et al. Bisphosphonates derived from fatty acids are potent growth inhibitors of Trypanosoma cruzi. Bioorg Med Chem Lett. 2001;11:789–792.
  • Szajnman SH, Montalvetti A, Wang Y, et al. Bisphosphonates derived from fatty acids are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase. Bioorg Med Chem Lett. 2003;13:3231–3235.
  • Szajnman SH, Ravaschino EL, Docampo R, et al. Synthesis and biological evaluation of 1-amino-1,1-bisphosphonates derived from fatty acids against Trypanosoma cruzi targeting farnesyl pyrophosphate synthase. Bioorg Med Chem Lett. 2005;15:4685–4690.
  • Szajnman SH, Rosso VS, Malayil L, et al. Design, synthesis and biological evaluation of 1-(fluoroalkylidene)-1,1-bisphosphonic acids against Toxoplasma gondii targeting farnesyl diphosphate synthase. Org Biomol Chem. 2012;10:1424–1433.
  • Recher M, Barboza AP, Li Z–H, et al. Design, synthesis and biological evaluation of sulfur-containing 1,1-bisphosphonic acids as antiparasitic agents. Eur J Med Chem. 2013;60:431–440.
  • Oldfield E, Zhang Y, Yin F Bisphosphonate compounds and methods with enhanced potency for multiple targets including FPPS, GGPPS, and DPPS. US Patent 8,012,949 B2; 2011.
  • Duschak VG. A decade of targets and patented drugs for chemotherapy of Chagas disease. Recent Pat Antiinfect Drug Discov. 2011;6:216–259.
  • Mott BT, Ferreira RS, Simeonov A, et al. Identification and optimization of inhibitors of trypanosomal cysteine proteases: cruzain, rhodesain, and TbCatB. J Med Chem. 2010;53:52–60.
  • Chen YT, Brinen LS, Kerr ID, et al. In vitro and in vivo studies of the trypanocidal properties of WRR-483 against Trypanosoma cruzi. PLoS Negl Trop Dis. 2010;4:e825.
  • Bourguignon SC, Cavalcanti DFB, de Souza AMT, et al. Trypanosoma cruzi: insights into naphthoquinone effects on growth and proteinase activity. Exp Parasitol. 2011;127:160–166.
  • Ferreira RS, Dessoy MA, Pauli I, et al. Synthesis, biological evaluation, and structure−activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents. J Med Chem. 2014;57:2380−2392.
  • Brak K, Doyle PS, McKerrow JH, et al. Identification of a new class of nonpeptidic inhibitors of cruzain. J Am Chem Soc. 2008;130:6404–6410.
  • Paez Prosper JA, Campillo Martin NE, Guerra Alvarez A, et al. Preparation of 2,2-dioxidoimidazo[4,5-c][1,2,6]thiadiazine derivatives as inhibitors of cruzain and their use in the treatment of Chagas disease. EP 2392577 A1; 2011.
  • Beaulieu C, Isabel E, Fortier A, et al. Identification of potent and reversible cruzipain inhibitors for the treatment of Chagas disease. Bioorg Med Chem Lett. 2010;20:7444–7449.
  • Black WC, Bayly CI, Davis DE, et al. Trifluoroethylamines as amide isosteres in inhibitors of cathepsin K. Bioorg Med Chem Lett. 2005;15:4741–4744.
  • Ndao M, Beaulieu C, Black WC, et al. Reversible cysteine protease inhibitors show promise for a Chagas disease cure. Antimicrob Agents Chemother. 2014;58:1167–1178.
  • Black WC, Beaulieu C Cathepsin cysteine protease inhibitors for the treatment of various diseases. WO2010148488 A1; 2010.
  • Lima LM, Barreiro EJL, Alves MA Hidrazide-N-acylhydrazone compounds, methos for producing hidrazide-N-acylhydrazone compounds, use of intermediates for producing hidrazide-N-acylhydrazones for the treatment of leishmaniasis and Chagas disease, and thus obtained pharmaceutical compositions. WO 2014/019044; 2014.
  • Alves MA, de Queiroz AC, Alexandre-Moreira MS, et al. Design, synthesis and in vitro trypanocidal and leishmanicidal activities of novel semicarbazone derivatives. Eur J Med Chem. 2015;100:24–33.
  • Manta B, Comini M, Medeiros A, et al. Trypanothione: A unique bis-glutathionyl derivative in trypanosomatids. Bioch Biophys Acta. 2013;1830:3199–3216.
  • Shames SL, Fairlamb AH, Cerami A, et al. Purification and characterization of trypanothione reductase from Crithidia fasciculata, a newly discovered member of the family of disulfide-containing flavoprotein reductases. Biochemistry. 1986;25:3519–3526.
  • Fairlamb AH. Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol. 1992;46:695–729.
  • Oza SL, Tetaud E, Ariyanayagam MR, et al. A single enzyme catalyses formation of trypanothione from glutathione and spermidine in Trypanosoma cruzi. J Biol Chem. 2002;39:35853–35861.
  • Krauth-Siegel RL, Bauer H, Schirmer RH. Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new drug targets in trypanosomes and malaria-causing plasmodia. Angew Chem Int Ed. 2005;44:690–715.
  • Salmon-Chemin L, Buisine E, Yardley V, et al. 2- and 3-Substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity. J Med Chem. 2001;44:548−565.
  • Bolognesi ML, Lizzi F, Perozzo R, et al. Synthesis of a small library of 2-phenoxy-1,4-naphtoquinone and 2-phenoxy-1,4-anthraquinone derivatives bearing anti-trypanosomal and anti-leishmanial activity. Bioorg Med Chem Lett. 2008;18:2272−2276.
  • Lizzi F, Veronesi G, Belluti F, et al. Conjugation of quinones with natural polyamines: toward an expanded antitrypanosomatid profile. J Med Chem. 2012;55:10490−10500.
  • Hiratake J, Kato H, Oda J. Mechanism-based inactivation of glutathione synthetase by phosphinic acid transition-state analog. J Am Chem Soc. 1994;116:12059–12060.
  • Chen S, Coward JK. Investigations on new strategies for the facile synthesis of polyfunctionalized phosphinates: phosphinopeptide analogues of glutathionylspermidine. J Org Chem. 1998;63:502–509.
  • Vicente E, Duchowicz PR, Benítez D, et al. Anti-T. cruzi activities and QSAR studies of 3-arylquinoxaline-2-carbonitrile di-N-oxides. Bioorg Med Chem Lett. 2010;20:4831–4835.
  • Benitez D, Cabrera M, Hernández P, et al. 3-Trifluoromethylquinoxaline N, N′-dioxides as anti-trypanosomatid agents. Identification of optimal anti-T. cruzi agents and mechanism of action studies. J Med Chem. 2011;54:3624–3636.
  • Monge A, Pérez S, Aldana I, et al. Quinoxaline derivatives as selective agents against Trypanosoma cruzi without causing mutagenic effects. PCT Int Appl WO 2012096556; 2012.
  • Abreu IA, Cabelli DE. Superoxide dismutases-a review of the metal-associated mechanistic variations. Biochim Biophys Acta. 2010;1804:263−274.
  • Olmo F, Clares MP, Marin C, et al. Synthetic single and double aza-scorpiand macrocycles acting as inhibitors of the antioxidant enzymes iron superoxide dismutase and trypanothione reductase in Trypanosoma cruzi with promising results in a murine model. RSC Advances. 2014;4:65108−65120.
  • Inclán M, Teresa Albelda MT, Frías JC, et al. Modulation of DNA binding by reversible metal-controlled molecular reorganizations of scorpiand-like ligands. J Am Chem Soc. 2012;134:9644−9656.
  • Garcia-Espana Monsonis E, Clares García MP, Blasco Llopis S, et al. Synthesis of scorpion-tail-like macrocycles useful as antiparasitic agents treating Trypanosoma cruzi or Leishmania spp. parasitic infestations. WO 2013087965; 2013.
  • Olmo F, Gómez-Contreras F, Navarro P, et al. Synthesis and evaluation of in vitro and in vivo trypanocidal properties of a new imidazole-containing nitrophthalazine derivative. Eur J Med Chem. 2015;106:106−119.
  • Olmo F, Rotger C, Ramírez-Macías I, et al. Synthesis and biological evaluation of N, N′-squaramides with high in vivo efficacy and low toxicity: toward a low-cost drug against Chagas disease. J Med Chem. 2014;57:987−999.
  • Rotger Pons MC, Costa Torres A, Sánchez Moreno M, et al. Antiparasitic activity of squaramide. ES2525079 (A1); 2014.
  • Dandapani S, Germain AR, Jewett I, et al. Diversity-oriented synthesis yields a new drug lead for treatment of Chagas disease. ACS Med Chem Lett. 2014;5:149−153.
  • Munoz B, Dandapani S, Jewett IT, et al. Small molecule inhibitors for treating parasitic infections. WO 20144031872 A2; 2014.
  • de Oliveira AB, Saúde DA, Perry KSP, et al. Trypanocidal sesquiterpenes from Lychnophora species. Phytother Res. 1996;10:292−295.
  • Branquinho RT, Mosqueira VCF, de Oliveira-Silva JCV, et al. Sesquiterpene lactone in nanostructured parenteral dosage form is efficacious in experimental Chagas disease. Antimicrob Agents Chemother. 2014;58:2067−2075.
  • Mosqueira VCF, Lana M, Guimarães DAS, et al. Pharmaceutical compositions containing sesquiterpene lactones belonging to the class of furan heliangolides for the treatment of parasitic infections and tumours. WO 2013059898, A1; 2013.
  • Romero EL, Morilla MJ. Nanotechnological approaches against Chagas disease. Adv Drug Deliv Rev. 2010;62:576–588.
  • Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7:606–619.
  • Merritt C, Silva LE, Tanner AL, et al. Kinases as druggable targets in trypanosomatid protozoan parasites. Chem Rev. 2014;114:1280−1304.
  • Ballou LM, Lin RZ. Rapamycin and mTOR kinase inhibitors. J Chem Biol. 2008;1:27–36.
  • Barquilla A, Saldivia M, Díaz R, et al. Third target of rapamycin complex negatively regulates development of quiescence in Trypanosoma brucei. Proc Natl Acad Sci USA. 2012;109:14399–14404.
  • de Jesus TC, Tonelli RR, Nardelli SC, et al. Target of rapamycin (TOR)-like 1 kinase is involved in the control of polyphosphate levels and acidocalcisome maintenance in Trypanosoma brucei. J Biol Chem. 2010;285:24131–24140.
  • Díaz-González R, Kuhlmann FM, Galán-Rodríguez C, et al. The susceptibility of trypanosomatid pathogens to PI3/mTOR kinase inhibitors affords a new opportunity for drug repurposing. PLoS Negl Trop Dis. 2011;5:e1297.
  • Zask A, Verheijen JC, Richard DJ. Recent advances in the discovery of small-​molecule ATP competitive mTOR inhibitors: a patent review. Expert Opinion Ther Patents. 2011;21:1109–1127.
  • Pollastri MP, Navarro M, Beverley S, et al. Antiparasitic agents based on mTOR inhibitors. WO 2012006619 A2; 2012.
  • Pollastri MP, Campbell RK. Target repurposing for neglected diseases. Future Med Chem. 2011;3:1307−1315.
  • Patel G, Karver CE, Behera R, et al. Kinase scaffold repurposing for neglected disease drug discovery: discovery of an efficacious, lapatanib-derived lead compound for trypanosomiasis. J Med Chem. 2013;56:3820−3832.
  • Devine W, Woodring JL, Swaminathan U, et al. Protozoan parasite growth inhibitors discovered by cross-screening yield potent scaffolds for lead discovery. J Med Chem. 2015;58:5522−5537.
  • Pollastri MP, Mehta N, Devine W, et al. Preparation of arylaminoheteroaryls as protozoan parasite growth inhibitors. U S Patent 20150259331 A1; 2015.
  • Cooke NG, Fernandes Gomes dos Santos PA, Furet P, et al. Use of the inhibitors of the activity or function of PI3K. WO 2013088404, A1; 2013.
  • Salas C, Tapia RA, Ciudad K, et al. Trypanosoma cruzi: activities of lapachol and α and ß-lapachone derivatives against epimastigote and trypomastigote forms. Bioorg Med Chem. 2008;16:668−674.
  • Khraiwesh MH, Lee CM, Brandy Y, et al. Antitrypanosomal activities and cytotoxicity of some novel imidosubstituted 1,4-naphthoquinone derivatives. Arch Pharm Res. 2012;35:27−33.
  • Brandy Y, Brandy N, Akinboye E, et al. Synthesis and characterization of novel unsymmetrical and symmetrical 3-halo- or 3-methoxy-substituted 2-dibenzoylamino-1,4-naphthoquinone derivatives. Molecules. 2013;18:1973−1984.
  • Bakare O, Lee CM, Brandy Y, et al. Method for inhibiting Trypanosoma cruzi. WO 2013016661 A1; 2013.
  • Frasch AC. Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. Parasitol Today. 2000;16:282–286.
  • Buscaglia CA, Campo VA, Frasch ACC, et al. Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol. 2006;4:229–236.
  • Buschiazzo A, Muiá R, Larrieux N, et al. Trypanosoma cruzi trans-sialidase in complex with a neutralizing antibody: structure/function studies towards the rational design of inhibitors. PLoS Pathog. 2012;8:e1002474.
  • Watts AG, Damager I, Amaya ML, et al. Trypanosoma cruzi trans-sialidase operates through a covalent sialyl-enzyme intermediate: tyrosine is the catalytic nucleophile. J Am Chem Soc. 2003;125:7532–7533.
  • Buchini S, Buschiazzo A, Withers SG. A new generation of specific Trypanosoma cruzi trans-sialidase inhibitors. Angew Chem Int Ed Engl. 2008;47:2700–2703.
  • Lieke T, Gröbe D, Blanchard V, et al. Invasion of Trypanosoma cruzi into host cells is impaired by N-propionylmannosamine and other N-acylmannosamines. Glycoconj J. 2011;28:31–37.
  • Jacobs T, Lieke T, Reutter W Use of hexosamine compounds and their analogs as pharmaceutical product, which inhibits the proliferation of trypanosomes, and thus for the treatment of trypanosome-induced disease. DE 102009053259 A1; 2011.
  • Jacobs RT, Plattner JJ, Keenan M. Boron-based drugs as antiprotozoals. Curr Opinion Infect Dis. 2011;24:586–592.
  • Jacobs RT, Plattner JJ, Nare B, et al. Benzoxaboroles: a new class of potential drugs for human African trypanosomiasis. Future Med Chem. 2011;3:1259–1278.
  • Chen D, Orr M, Sligar J, et al. Boron-containing small molecules as antiprotozoal agents WO 2011019618 A1; 2011.
  • Tarleton RL, Reithinger R, Urbina JA, et al. The challenges of Chagas disease—grim outlook or glimmer of hope. PLoS Med. 2007;4:e332.
  • Gomes YM, Lorena VMB, Luquetti AO. Diagnosis of Chagas disease: what has been achieved? What remains to be done with regard to diagnosis and follow up studies? Mem Inst Oswaldo Cruz. 2009;104(Suppl. I):115–121.
  • Lima JA, Szarfman A, Lima SD, et al. Absence of left ventricular dysfunction during acute chagasic myocarditis in the rhesus monkey. Circulation. 1986;73:172–179.
  • Gomes YM. PCR and serodiagnosis in chronic Chagas’ disease: biotechnological advances. Appl Biochem Biotechnol. 1997;66:107–119.
  • Cançado JR. Long term evaluation of etiological treatment of Chagas disease with benznidazole. Rev Inst Med Trop Sao Paulo. 2002;44:29–37.
  • Krettli AU, Brener Z. Resistance against Trypanosoma cruzi associated to anti-living trypomastigote antibodies. J Immunol. 1982;28:2009–2012.
  • Afonso AM, Ebell MH, Tarleton RL. A systematic review of high quality diagnostic tests for Chagas disease. PLoS Negl Trop Dis. 2012;6:e1881.
  • Pinazo MJ, Thomas MC, Bua J, et al. Biological markers for evaluating therapeutic efficacy in Chagas disease, a systematic review. Expert Rev AntiInfect Ther. 2014;12:479–496.
  • Coronado X, Zulantay I, Reyes E, et al. Comparison of Trypanosoma cruzi detection by PCR in blood and dejections of cursive: triatoma infestans fed on patients with chronic Chagas disease. Acta Trop. 2006;98:314–317.
  • Tarleton RL, Etheridge RD Jr Diagnostic assay for Trypanosoma cruzi infection. US Patent 8,329,411 B2; 2012.
  • Li X Oligonucleotide probe for the detection of Trypanosoma cruzi (Chagas disease) in biological samples CA 2736087 A1; 2012.
  • Thomas Carazo MC, López López MC, Maranon Lizana C, et al. Method for the differential diagnosis of Chagas disease. WO 2012007622 (A1); 2012.
  • Carlier Y, Dumonteil E Methods for detection of Trypanosoma cruzi using loop-mediated isothermal amplication WO 2011087782 A2; 2011.
  • Probst C, Komorowski L Method for diagnosis of paraneoplastic neurological syndrome by immunoassay detection of autoantibodies against CRMP5 and/or subsequences thereof. DE 102009033281 A1; 2011.
  • Bustamante JM, Craft JM, Crowe BD, et al. New, combined, and reduced dosing treatment protocols cure Trypanosoma cruzi infection in mice. J Infect Dis. 2014;209:150–162.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.