128
Views
7
CrossRef citations to date
0
Altmetric
Patent Evaluation

Pyrazolo[1,5-a]pyrimidine-based macrocycles as novel HIV-1 inhibitors: a patent evaluation of WO2015123182

, , &
Pages 979-986 | Received 31 Mar 2016, Accepted 04 Jul 2016, Published online: 19 Jul 2016

References

  • Engelman A, Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol. 2012;10(4):279–290.
  • Reeves JD, Piefer AJ. Emerging drug targets for antiretroviral therapy. Drugs. 2005;65(13):1747–1766.
  • Global summary of the HIV/AIDS epidemic. Word Health Organization [ cited 2015 Jul]. Available from: http://www.who.int/hiv/data/epi_core_july2015.png?ua=1
  • Kang D, Song Y, Chen W, et al. “Old Dogs with New Tricks”: exploiting alternative mechanisms of action and new drug design strategies for clinically validated HIV targets. Mol Biosyst. 2014;10(8):1998–2022.
  • Zhan P, Pannecouque C, De Clercq E, et al. Anti-HIV drug discovery and development: current innovations and future trends. J Med Chem. 2016;59(7):2849–2878.
  • Zhan P, Chen X, Li D, et al. HIV-1 NNRTIs: structural diversity, pharmacophore similarity, and implications for drug design. Med Res Rev. 2013;33 Suppl 1:E1–72.
  • Li D, Zhan P, De Clercq E, et al. Strategies for the design of HIV-1 non-nucleoside reverse transcriptase inhibitors: lessons from the development of seven representative paradigms. J Med Chem. 2012;55:3595–3613.
  • Zhan P, Li W, Chen H, et al. Targeting protein-protein interactions: a promising avenue of anti-HIV drug discovery. Curr Med Chem. 2010;17(29):3393–3409.
  • Christ F, Debyser Z. HIV-1 integrase inhibition: looking at cofactor interactions. Future Med Chem. 2015;7(18):2407–2410.
  • Demeulemeester J, Chaltin P, Marchand A, et al. LEDGINs, non-catalytic site inhibitors of HIV-1 integrase: a patent review (2006-2014). Expert Opin Ther Pat. 2014;24(6):609–632.
  • Giordanetto F, Kihlberg J. Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties? J Med Chem. 2014;57(2):278–295.
  • Narasimhulu Naidu B, Patel M, D’Andrea S, et al. Pyrazolopyrimidine macrocycles as inhibitors of human immunodeficiency virus replication. WO2015126376A1. 2015.
  • Narasimhulu Naidu B, Walker MA, Sorenson ME, et al. Pyrazolopyrimidine macrocycles as inhibitors of human immunodeficiency virus replication. WO2015126737A1. 2015.
  • Narasimhulu Naidu B, Walker MA, Sorenson ME, et al. Pyrazolopyrimidine macrocycles as inhibitors of human immunodeficiency virus replication. US20150232481A1. 2015.
  • Eastman KJ, Parcella KE, Peese K, et al. Inhibitors of human immunodeficiency virus replication. WO2015126765A1. 2015.
  • Peese K, Wang Z, Kadow JF, et al. Imidazopyridine macrocycles as inhibitors of human immunodeficiency virus replication. US20150232480A1. 2015.
  • Peese K, Wang Z, Langley DR, et al. Pyrazolopyrimidine macrocycles as inhibitors of human immunodeficiency virus replication. WO2015123182A1. 2015.
  • Chaumeil H, Signorella S, Le Drian C. Suzuki cross-coupling reaction of sterically hindered aryl boronates with 3-iodo-4-methoxybenzoic acid methylester. Tetrahedron. 2000;56:9655–9662.
  • Christ F, Voet A, Marchand A, et al. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol. 2010;6(6):442–448.
  • Christ F, Shaw S, Demeulemeester J, et al. Small-molecule inhibitors of the LEDGF/p75 binding site of integrase block HIV replication and modulate integrase multimerization. Antimicrob Agents Chemother. 2012;56(8):4365–4374.
  • Fader LD, Malenfant E, Parisien M, et al. Discovery of BI 224436, a noncatalytic site integrase inhibitor (NCINI) of HIV-1. ACS Med Chem Lett. 2014;5(4):422–427.
  • Fenwick C, Amad M, Bailey MD, et al. Preclinical profile of BI 224436, a novel HIV-1 non-catalytic-site integrase inhibitor. Antimicrob Agents Chemother. 2014;58(6):3233–3244.
  • Jurado KA, Wang H, Slaughter A, et al. Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proc Natl Acad Sci U S A. 2013;110(21):8690–8695.
  • Le Rouzic E, Bonnard D, Chasset S, et al. Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage. Retrovirology. 2013;10:144.
  • Slaughter A, Jurado KA, Deng N, et al. The mechanism of H171T resistance reveals the importance of Nδ-protonated His171 for the binding of allosteric inhibitor BI-D to HIV-1 integrase. Retrovirology. 2014;11:100.
  • Sharma A, Slaughter A, Jena N, et al. A new class of multimerization selective inhibitors of HIV-1 integrase. PLoS Pathog. 2014;10(5):e1004171.
  • Tsiang M, Jones GS, Niedziela-Majka A, et al. New class of HIV-1 integrase (IN) inhibitors with a dual mode of action. J Biol Chem. 2012;287(25):21189–21203.
  • Feng L, Sharma A, Slaughter A, et al. The A128T resistance mutation reveals aberrant protein multimerization as the primary mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem. 2013;288(22):15813–15820.
  • Rhodes DI, Peat TS, Vandegraaff N, et al. Crystal structures of novel allosteric peptide inhibitors of HIV integrase identify new interactions at the LEDGF binding site. Chembiochem. 2011;12(15):2311–2315.
  • Kessl JJ, Jena N, Koh Y, et al. Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem. 2012;287(20):16801–16811.
  • Driggers EM, Hale SP, Lee J, et al. The exploration of macrocycles for drug discovery–an underexploited structural class. Nat Rev Drug Discov. 2008;7(7):608–624.
  • Fang Z, Song Y, Zhan P, et al. Conformational restriction: an effective tactic in ‘follow-on’-based drug discovery. Future Med Chem. 2014;6(8):885–901.
  • Fujii N, Oishi S, Hiramatsu K, et al. Molecular-size reduction of a potent CXCR4-chemokine antagonist using orthogonal combination of conformation- and sequence-based libraries. Angew Chem Int Ed Engl. 2003;42(28):3251–3253.
  • Ueda S, Oishi S, Wang ZX, et al. Structure-activity relationships of cyclic peptide-based chemokine receptor CXCR4 antagonists: disclosing the importance of side-chain and backbone functionalities. J Med Chem. 2007;50(2):192–198.
  • Mungalpara J, Thiele S, Eriksen O, et al. Rational design of conformationally constrained cyclopentapeptide antagonists for C-x-C chemokine receptor 4 (CXCR4). J Med Chem. 2012;55(22):10287–10291.
  • Demmer O, Frank AO, Hagn F, et al. A conformationally frozen peptoid boosts CXCR4 affinity and anti-HIV activity. Angew Chem Int Ed Engl. 2012;51(32):8110–8113.
  • Thuring JWJ, Bonfanti J-F, Fortin JMC. Macrocyclic derivatives as HIV replication inhibitors and their preparation, pharmaceutical compositions and use in the treatment of viral infection. WO2011045330 A1. 2011.
  • Rashad AA, Kalyana Sundaram RV, Aneja R, et al. Macrocyclic envelope glycoprotein antagonists that irreversibly inactivate HIV-1 before host cell encounter. J Med Chem. 2015;58(18):7603–7608.
  • Chaiken I, Rashad AA. Peptide triazole inactivators of HIV-1: how do they work and what is their potential? Future Med Chem. 2015;7(17):2305–2310.
  • Tang J, Jones SA, Jeffery JL, et al. Synthesis and biological evaluation of macrocyclized betulin derivatives as a novel class of anti-HIV-1 maturation inhibitors. Open Med Chem J. 2014;8:23–27.
  • Ghosh AK, Swanson LM, Cho H, et al. Structure-based design: synthesis and biological evaluation of a series of novel cycloamide-derived HIV-1 protease inhibitors. J Med Chem. 2005;48(10):3576–3585.
  • Tojo Y, Koh Y, Amano M, et al. Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro. Antimicrob Agents Chemother. 2010;54(8):3460–3470.
  • McGowan D, Vendeville S, Lin TI, et al. Finger-loop inhibitors of the HCV NS5b polymerase. Part 1: discovery and optimization of novel 1,6- and 2,6-macrocyclic indole series. Bioorg Med Chem Lett. 2012;22(13):4431–4436.
  • Vendeville S, Lin TI, Hu L, et al. Finger loop inhibitors of the HCV NS5b polymerase. Part II. Optimization of tetracyclic indole-based macrocycle leading to the discovery of TMC647055. Bioorg Med Chem Lett. 2012;22(13):4437–4443.
  • Cummings MD, Lin TI, Hu L, et al. Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase. J Med Chem. 2014;57(5):1880–1892.
  • Rudd MT, McIntyre CJ, Romano JJ, et al. Development of macrocyclic inhibitors of HCV NS3/4A protease with cyclic constrained P2-P4 linkers. Bioorg Med Chem Lett. 2012;22(23):7207–7213.
  • Avolio S, Summa V. Advances in the development of macrocyclic inhibitors of hepatitis C virus NS3-4A protease. Curr Top Med Chem. 2010;10(14):1403–1422.
  • Li H, Scott JP, Chen CY, et al. Synthesis of bis-macrocyclic HCV protease inhibitor MK-6325 via intramolecular sp2-sp3 Suzuki-Miyaura coupling and ring closing metathesis. Org Lett. 2015;17(6):1533–1536.
  • Kuethe J, Zhong YL, Yasuda N, et al. Development of a practical, asymmetric synthesis of the hepatitis C virus protease inhibitor MK-5172. Org Lett. 2013;15(16):4174–4177.
  • Neelamkavil SF, Agrawal S, Bara T, et al. Discovery of MK-8831, a novel spiro-proline macrocycle as a pan-genotypic HCV-NS3/4a protease inhibitor. ACS Med Chem Lett. 2015;7(1):111–116.
  • McCauley JA, McIntyre CJ, Rudd MT, et al. Discovery of vaniprevir (MK-7009), a macrocyclic hepatitis C virus NS3/4a protease inhibitor. J Med Chem. 2010;53(6):2443–2463.
  • Song ZJ, Tellers DM, Journet M, et al. Synthesis of vaniprevir (MK-7009): lactamization to prepare a 20-membered [corrected] macrocycle. J Org Chem. 2011;76(19):7804–7815.
  • Hinrichsen H, Benhamou Y, Wedemeyer H, et al. Short-term antiviral efficacy of BILN 2061, a hepatitis C virus serine protease inhibitor, in hepatitis C genotype 1 patients. Gastroenterology. 2004;127(5):1347–1355.
  • Seiwert SD, Andrews SW, Jiang Y, et al. Preclinical characteristics of the hepatitis C virus NS3/4A protease inhibitor ITMN-191 (R7227). Antimicrob Agents Chemother. 2008;52(12):4432–4441.
  • Bhat A, Roberts LR, Dwyer JJ. Lead discovery and optimization strategies for peptide macrocycles. Eur J Med Chem. 2015;94:471–479.
  • Peña S, Scarone L, Serra G. Macrocycles as potential therapeutic agents in neglected diseases. Future Med Chem. 2015;7(3):355–382.
  • Whitty A, Zhong M, Viarengo L, et al. Quantifying the chameleonic properties of macrocycles and other high-molecular-weight drugs. Drug Discov Today. 2016;21(5):712–717.
  • Allen SE, Dokholyan NV, Bowers AA. Dynamic docking of conformationally constrained macrocycles: methods and applications. ACS Chem Biol. 2016;11(1):10–24.
  • Pasini D. The click reaction as an efficient tool for the construction of macrocyclic structures. Molecules. 2013;18(8):9512–9530.
  • Yu X, Sun D. Macrocyclic drugs and synthetic methodologies toward macrocycles. Molecules. 2013;18(6):6230–6268.
  • Liao GP, Abdelraheem EMM, Neochoritis CG, et al. Versatile multicomponent reaction macrocycle synthesis using α-isocyano-ω-carboxylic acids. Org Lett. 2015;17(20):4980–4983.
  • Seigal BA, Connors WH, Fraley A, et al. The discovery of macrocyclic XIAP antagonists from a DNA-programmed chemistry library, and their optimization to give lead compounds with in vivo antitumor activity. J Med Chem. 2015;58(6):2855–2861.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.