254
Views
15
CrossRef citations to date
0
Altmetric
Review

Pleiotropic mechanisms of action of perhexiline in heart failure

, , , &
Pages 1049-1059 | Received 15 Feb 2016, Accepted 06 Jul 2016, Published online: 25 Jul 2016

References

  • Yancy CW, Jessup M, Bozkurt B, et al. ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128:e240–e327.
  • Tiku Owens A, Brozena SC, Jessup M. New managements strategies in heart failure. Circ Res. 2016;118:480–495.
  • Braunwald E. Research advances in heart failure: a compendium. Circ Res. 2013;113:633–645.
  • George CH, Barberini-Jammaers SR, Muller CT. Refocussing therapeutic strategies for cardiac arrhythmias: defining viable molecular targets to restore cardiac ion flux. Expert Opin Ther Patents. 2008;18:1–19.
  • von Leuder TG, Krum H. New medical therapies for heart failure. Nat Rev Cardiol. 2015;12:730–740.
  • Sanganalmath SK, Bolli R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res. 2013;113:810–834.
  • George CH. Sarcoplasmic reticulum Ca2+ leak in heart failure: mere observation or functional relevance? Cardiovasc Res. 2008;77:302–314.
  • George CH, Parthimos D, Silvester NC. A network-oriented perspective on cardiac calcium signaling. Am J Physiol Cell Physiol. 2012;303:C897–C910.
  • Boileau E, George CH, Parthimos D, et al. Synergy between intercellular communication and intracellular Ca2+ handling in arrhythmogenesis. Ann Biomed Engineer. 2015;43:1614–1625.
  • Antoons G, Sipido KR. Targeting calcium handling in arrhythmias. Europace. 2008;10:1364–1369.
  • Bers DM, Harris SP. To the rescue of the failing heart. Nature. 2011;473:36–39.
  • Anderson ME. Multiple downstream proarrhythmic targets for calmodulin kinase II: moving beyond an ion channel-centric focus. Cardiovasc Res. 2007;73:657–666.
  • Wehrens XHT, Marks AR. Novel therapeutic approaches for heart failure by normalizing calcium cycling. Nat Rev Drug Disc. 2004;3:1–9.
  • Yano M, Yamamoto T, Ikeda Y, et al. Mechanisms of disease: ryanodine receptor defects in heart failure and fatal arrhythmia. Nat Clin Pract Cardiovasc Med. 2006;3:43–52.
  • Ashrafian H, Horowitz JD, Frenneaux MP. Perhexiline. Cardiovasc Drug Rev. 2007;25:76–97.
  • Inglis S, Stewart S. Metabolic therapeutics in angina pectoris: history revisited with perhexiline. Eur J Cardiovasc Nurs. 2006;5:176–184.
  • Lee L, Horowitz J, Frenneaux M. Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J. 2004;25:634–641.
  • Singh S, Schwarz K, Horowitz J, et al. Cardiac energetic impairment in heart disease and the potential role of metabolic modulators: a review for clinicians. Circ Cardiovasc Genet. 2014;7:720–728.
  • Chong CR, Sullivan DJ. New uses for old drugs. Nature. 2007;448:645–646.
  • Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–683.
  • Keiser MJ, Setola V, Irwin JJ, et al. Predicting new molecular targets for known drugs. Nature. 2009;462:175–181.
  • Silvester NC, George CH. Searching for new cardiovascular drugs: towards improved systems for drug screening? Expert Opin Drug Discov. 2011;6:1155–1170.
  • Lewis KJ, Silvester NC, Barberini-Jammaers SR, et al. A new system for profiling drug-induced calcium signal perturbation in human embryonic stem cell-derived cardiomyocytes. J Biomol Screen. 2015;20:330–340.
  • Fleckenstein A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann Rev Pharmacol Toxicol. 1977;17:149–166.
  • Vaughan Williams EM. Antiarrhythmic action and the puzzle of perhexiline. London: Academic Press; 1980.
  • Fleckenstein A. History of calcium antagonists. Circ Res. 1983;52(Suppl. I):3–16.
  • Spedding M. Changing surface charge with salicylate differentiates between subgroups of calcium-antagonists. Br J Pharmacol. 1984;83:211–220.
  • Barry WH, Horowitz JD, Smith TW. Comparison of negative inotropic potency, reversibility, and effects on calcium influx of six calcium channel antagonists in cultured myocardial cells. Br J Pharmacol. 1985;85:51–59.
  • Cole PL, Beamer AD, McGowan N, et al. Efficacy and safety of perhexiline maleate in refractory angina. A double-blind placebo-controlled clinical trial of a novel antianginal agent. Circulation. 1990;81:1260–1270.
  • Bleifer DJ, Bleifer SB, Okun R. Perhexiline maleate in angina pectoris: a controlled, double-blind clinical trial. Geriatrics. 1972;27:109–115.
  • Burns-Cox CJ, Chandrasekhar KP, Ikram H, et al. Clinical evaluation of perhexiline maleate in patients with angina pectoris. BMJ. 1971;4:586–588.
  • Liberts EA, Willoughby SR, Kennedy JA, et al. Effects of perhexiline and nitroglycerin on vascular, neutrophil and platelet function in patients with stable angina pectoris. Eur J Pharmacol. 2007;560:49–55.
  • Lyon LJ, Nevin MA, Fisch S, et al. Perhexiline maleate in treatment of angina pectoris. Lancet. 1971;274:1272–1274.
  • White HD, Lowe JB. Antianginal efficacy of perhexiline maleate in patients refractory to beta-adrenoceptor blockade. Int J Cardiol. 1983;3:145–155.
  • Willoughby SR, Stewart S, Chirkov YY, et al. Beneficial clinical effects of perhexiline in patients with stable angina pectoris and acute coronary syndromes are associated with potentiation of platelet responsiveness to nitric oxide. Eur Heart J. 2002;23:1946–1954.
  • Ashrafian H, Frenneaux M, Opie LH. Metabolic mechanisms in heart failure. Circulation. 2007;116:434–448.
  • Ingwall JS. Energy metabolism in heart failure and remodelling. Cardiovasc Res. 2009;81:412–419.
  • Neubauer S. Mechanisms of disease: the failing heart – an engine out of fuel. N Engl J Med. 2007;356:1140–1151.
  • Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85:1093–1129.
  • Tuunanen H, Knuuti J. Metabolic remodelling in human heart failure. Cardiovasc Res. 2011;90:251–257.
  • Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart failure. J Physiol. 2004;555:1–13.
  • Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. 2013;113:709–724.
  • Dass S, Holloway CJ, Cochlin LE, et al. No evidence of myocardial oxygen deprivation in nonischemic heart failure. Circ Heart Fail. 2015;8:1088–1093.
  • Stanley WC, Chandler MP. Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev. 2002;7:115–130.
  • Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10:307–318.
  • Arad M, Seidman CE, Seidman JG. AMP-activated protein kinase in the heart: role during health and disease. Circ Res. 2007;100:474–488.
  • Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13:1016–1023.
  • Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15:155–162.
  • McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system: from concept to molecular analysis. Eur J Biochem. 1997;244:1–14.
  • Ceccarelli SM, Chomienne O, Gubler M, et al. Carnitine palmitoyltransferase (CPT) modulators: a medicinal chemistry perspective on 35 years of research. J Med Chem. 2011;54:3109–3152.
  • Chugai Seiyaku Kabushiki Kaisha. Heterocyclic compounds useful as malonyl-CoA decarboxylase inhibitors. US 7,696,365. 2010.
  • Chugai Seiyaku Kabushiki Kaisha. Piperidine compounds useful as malonyl-CoA decarboxylase inhibitors. US 7,449,482. 2008.
  • Dyck JRB, Lopaschuk GD. Malonyl CoA control of fatty acid oxidation in the ischemic heart. J Mol Cell Cardiol. 2002;34:1099–1109.
  • Lee L, Campbell R, Scheuermann-Freestone M, et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation. 2005;112:3280–3288.
  • Abozguia K, Elliott P, McKenna W, et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation. 2010;122:1562–1569.
  • Beadle RM, Williams LK, Kuehl M, et al. Improvement in cardiac energetics by perhexiline in heart failure due to dilated cardiomyopathy. JACC: Heart Fail. 2015;3:202–211.
  • Lee ESP, Edmunds L, Fraser AG, et al. Perhexiline improves functional outcome in patients with refractory angina and heart failure. Eur J Heart Fail. 2013;12:S241.
  • Pepine CJ, Schang SJ, Bemiller CR. Effects of perhexiline on coronary hemodynamic and myocardial metabolic responses to tachycardia. Circulation. 1974;XLIX:887–893.
  • Jeffery FMH, Alvarez L, Diczku V, et al. Direct evidence that perhexiline modifies myocardial substrate utilization from fatty acids to lactate. J Cardiovasc Pharmacol. 1995;25:469–472.
  • Queen Elizabeth Hospital. Methods related to the treatment of and isolation of compounds for treatment of ischaemic conditions. WO1997000678. 1997.
  • Heart Metabolics Limited. Perhexiline for treating chronic heart failure. US 8,470,806. 2013.
  • Heart Metabolics Limited. Treatment of heart failure. US 8,440,697. 2013.
  • University of Birmingham. Perhexiline for use in the treatment of hypertrophic cardiomyopathy (HCM). US 8,697,728. 2014.
  • University Court of the University of Aberdeen. Fluoro-perhexiline compounds and their therapeutic use. WO2014184561. 2014.
  • Chirkov YY, Holmes AS, Willoughby SR, et al. Stable angina and acute coronary syndromes are associated with nitric oxide resistance in platelets. J Am Coll Cardiol. 2001;37:1851–1857.
  • Hudak WJ, Lewis RE, Kuhn WL. Cardiovascular pharmacology of perhexiline. J Pharm Exp Ther. 1970;137:371–382.
  • O’Hara N, Ono H, Ognuro K, et al. Vasodilating effects of perhexiline, glyceryl trinitrate, and verapamil on the coronary, femoral, renal, and mesenteric vasculature of the dog. J Cardiovasc Pharmacol. 1981;3:251–268.
  • Morano I, Isac M, Bletz C, et al. Perhexiline increases calcium-activated force in skinned psoas fibres by raising calcium affinity of troponin-C. Biomed Biochim Acta. 1989;48:S329–S34.
  • Kennedy JA, Beck-Oldach K, McFadden-Lewis K, et al. Effect of the anti-anginal agent, perhexiline, on neutrophil, valvular and vascular superoxide formation. Eur J Pharmacol. 2006;531:13–19.
  • Frenneaux M. New tricks for an old drug. Eur Heart J. 2002;23:1898–1899.
  • Kennedy JA, Unger SA, Horowitz J. Inhibition of carnitine palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone. Biochem Pharmacol. 1996;52:273–280.
  • Jackson VN, Cameron JM, Fraser F, et al. Use of six chimeric proteins to investigate the role of intramolecular interactions in determining the kinetics of carnitine palmitoyltransferase I isoforms. J Biol Chem. 2000;275:19560–19566.
  • Jackson VN, Cameron JM, Zammit VA, et al. Sequencing and functional expression of the malonyl-CoA-sensitive carnitine palmitoyltransferase from Drosophila melanogaster. Biochem J. 1999;341:483–489.
  • Rampe D, Wang Z, Fermini B, et al. Voltage- and time-dependent block by perhexiline of K+ currents in human atrium and in cells expressing a Kv1.5-type cloned channel. J Pharmacol Exp Ther. 1995;274:444–449.
  • Gatto GJ Jr, Ao Z, Kearse MG, et al. NADPH oxidase-dependent and -independent mechanisms of reported inhibitors of reactive oxygen generation. J Enzyme Inhib Med Chem. 2013;28:95–104.
  • Perrin MJ, Kuchel PW, Campbell TJ, et al. Drug binding to the inactivated state is necessary but not sufficient for high-affinity binding to human ether-a-go-go-related gene channels. Mol Pharmacol. 2008;74:1443–1452.
  • Walker BD, Valenzuela SM, Singleton CB, et al. Inhibition of HERG channels stably expressed in a mammalian cell line by the antianginal agent perhexiline maleate. Br J Pharmacol. 1999;127:243–251.
  • Grima M, Velly J, Decker N, et al. Inhibitory effects of some cyclohexylaralkylamines related to perhexiline on sodium influx, binding of [3H]batrachotoxinin A 20-alpha-benzoate and [3H]nitrendipine and on guinea pig left atria contractions. Eur J Pharmacol. 1988;147:173–185.
  • Kluppel MLW, Vieira Lopes LC, Silveira O, et al. Possible mechanism of action of perhexiline maleate on heart mitochondria. Biochem Pharmacol. 1976;25:2383–2386.
  • Shacoori V, Leray G, Guenet L, et al. Inhibition of (Na+,K+)-ATPase and Mg++-ATPase by a lysosomotropic drug: perhexiline maleate. Res Commun Chem Pathol Pharmacol. 1988;59:161–172.
  • Kennedy JA, Kiosoglous AJ, Murphy GA, et al. Effect of perhexiline and oxfenicine on myocardial function and metabolism during low-flow ischemia/reperfusion in the isolated rat heart. J Cardiovasc Pharmacol. 2000;36:794–801.
  • Heygi B, Komaromi I, Nanasi PP, et al. Selectivity problems with drugs acting on cardiac Na+ and Ca2+ channels. Curr Med Chem. 2013;20:2552–2571.
  • George CH, Thomas NL, Lai FA. Ryanodine receptor dysfunction in arrhythmia and sudden cardiac death. Future Cardiol. 2005;1:531–541.
  • Mencher SK, Wang LG. Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC Clin Pharmacol. 2005;5:3.
  • Smith BK, Perry CGR, Koves TR, et al. Identification of a novel malonyl-CoA IC50 for CPT-1: implications for predicting in vivo fatty acid oxidation rates. Biochem J. 2012;448:13–20.
  • Stephens TW, Higgins AJ, Cook GA, et al. Two mechanisms produce tissue-specific inhibition of fatty acid oxidation by oxfenicine Biochem J. 1985;227:651–660.
  • Patel A, Jones SA, Ferro A, et al. Pharmaceutical salts: a formulation trick or a clinical conundrum. Br J Cardiol. 2009;16:281–286.
  • Pacanis A, Strzelecki T, Rogulski J. Effects of maleate on the content of CoA and its derivatives in rat kidney mitochondria. J Biol Chem. 1981;256:13035–13038.
  • Rogulski J, Pacanis A, Strzelecki T, et al. Effects of maleate on carbohydrate metabolism in rats. Am J Physiol. 1976;230:1163–1167.
  • Tuncel AT, Ruppert T, Wang B-T, et al. Maleic acid – but not structurally related methylmalonic acid – interrupts energy metabolism by impaired calcium homeostasis. PLoS One. 2015;10:e0128770.
  • Yin X, Dwyer J, Langley SR, et al. Effects of perhexiline-induced fuel switch on the cardiac proteome and metabolome. J Mol Cell Cardiol. 2013;55:27–30.
  • Gehmlich K, Dodd MS, Allwood JW, et al. Changes in the cardiac metabolome caused by perhexiline treatment in a mouse model of hypertrophic cardiomyopathy. Mol Biosyst. 2015;11:564–573.
  • Unger SA, Kennedy JA, McFadden-Lewis K, et al. Dissociation between metabolic and efficiency effects of perhexiline in normoxic rat myocardium. J Cardiovasc Pharmacol. 2005;46:849–55.
  • Shah RR, Oates NS, Idle JR, et al. Impaired oxidation of debrisoquine in patients with perhexiline neuropathy. BMJ. 1982;284:295–299.
  • Deschamps D, DeBeco V, Fisch C, et al. Inhibition by perhexiliene of oxidative phosphorylation and the B-oxidation of fatty acids: possible role in pseudoalcoholic liver lesions. Hepatology. 1994;19:948–961.
  • Shah RR. Can pharmacogenetics help rescue drugs withdrawn from the market? Pharmacogenomics. 2006;7:889–908.
  • Singlas E, Goujet MA, Simon P. Pharmacokinetics of perhexiline maleate in anginal patients with and without peripheral neuropathy. Eur J Clin Pharmacol. 1978;14:195–201.
  • Afzal Mir M, Kafetzakis EM. Assessment of perhexiline maleate in angiographically proven intractable angina: a double-blind trial. Am Heart J. 1978;96:350–354.
  • Morgan MY, Reshef R, Shah RR, et al. Impaired oxidation of debrisoquine in patients with perhexiline liver injury. Gut. 1984;25:1057–1064.
  • Fromenty B, Pessayre D. Inhibition of mitochondrial beta-oxidation as a mechanism of hepatoxicity. Pharmac Ther. 1995;67:101–154.
  • Cooper RG, Evans DAP, Price AH. Studies on the metabolism of perhexiline in man. Eur J Clin Pharmacol. 1987;32:569–576.
  • Gonzales FJ, Skoda RC, Kimura S, et al. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature. 1988;331:442–446.
  • Sallustio BC, Westley IS, Morris RG. Pharmacokinetics of the antianginal agent perhexiline: relationship between metabolic ratio and steady-state dose. Br J Clin Pharmacol. 2002;54:107–114.
  • Gardiner SJ, Begg EJ. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharm Rev. 2006;58:521–590.
  • Amoah AG, Gould BJ, Parke DV. Single-dose pharmacokinetics of perhexiline administered orally to humans. J Chromatogr. 1984;305:401–409.
  • Amoah AG, Gould BJ, Parke DV, et al. Further studies on the pharmacokinetics of perhexiline maleate in humans. Xenobiotica. 1986;16:63–68.
  • Cooper RG, Evans DAP, Whibley EJ. Polymorphic hydroxylation of perhexiline maleate in man. J Med Genet. 1984;21:27–33.
  • Hutt AJ, Tan SC. Drug chirality and its clinical significance. Drugs. 1996;52(Suppl. 5):1–12.
  • Chong CR, Drury NE, Licari G, et al. Stereoselective handling of perhexiline: implications regarding accumulation within the human myocardium. Eur J Clin Pharmacol. 2015;71:1485–1491.
  • Gould BJ, Amoah AG, Parke DV. Stereoselective pharmacokinetics of perhexiline. Xenobiotica. 1986;16:491–502.
  • Inglis SC, Herbert MK, Davies BJ, et al. Effect of CYP2D6 metabolizer status on the disposition of the (+) and (-) enantiomers of perhexiline in patients with myocardial ischaemia. Phamacogenet Genomics. 2007;17:305–312.
  • Licari G, Sallustio BC, Somogyi AA, et al. The enantiomers of the myocardial metabolic agent perhexiline display divergent effects on hepatic energy metabolism and peripheral neural function in rats. Glob Heart. 2014;9:e272.
  • Adelaide Research & Innovation Pty Ltd; Central Adelaide Local Health Network Inc.; Itek Ventures Pty Ltd. Uses of (-)-perhexiline. WO2014036603. 2014.
  • Horowitz JD, Morris PM, Drummer OH, et al. High-performance liquid chromatography assay of perhexiline maleate in plasma. J Pharmacol Sci. 1981;70:320–322.
  • Horowitz JD, Sia STB, Macdonald PS, et al. Perhexiline maleate treatment for severe angina pectoris- correlations with pharmacokinetics. Int J Cardiol. 1986;13:219–229.
  • Stewart S, Voss DW, Northey DL, et al. Relationship between plasma perhexiline concentration and symptomatic status during short-term perhexiline therapy. Ther Drug Monit. 1996;18:635–639.
  • Tylutki Z, Polak S. Plasma vs. heart tissue concentration in humans - literature data analysis of drugs distribution. Biopharm Drug Dispos. 2015;36:337–351.
  • Drury NE, Licari G, Chong C-R, et al. Relationship between plasma, atrial and ventricular perhexiline concentrations in humans: insights into factors affecting myocardial uptake. Br J Clin Pharmacol. 2013;77:789–795.
  • Seki S, Kobayashi M, Itagaki S, et al. Contribution of organic anion transporting polypeptide OAT2B1 to amiodarone accumulation in lung epithelial cells. Biochim Biophys Acta. 2009;1788:911–917.
  • Matsuo S, Cho YW, Aviado DM. Pharmacology of a new antianginal drug: perhexiline. II. Heart rate and transmembrane potential of cardiac tissue. Chest. 1970;58:581–585.
  • Yokoyama S, Konishi T, Matsuyama E, et al. Effects of perhexiline maleate on the refractory periods of isolated atrial muscle and atrioventricular node of the rabbit. J Cardiovasc Pharmacol. 1982;4:26–31.
  • Chrusciel P, Rysz J, Banach M. Defining the role of trimetazidine in the treatment of cardiovascular disorders: some insights on its role in heart failure and peripheral artery disease. Drugs. 2014;74:971–980.
  • Kantor PF, Lucien A, Kozak R, et al. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res. 2000;86:580–588.
  • Kennedy JA, Horowitz JD. Effect of trimetazidine on carnitine palmitoyltransferase-1 in the rat heart. Cardiovasc Drugs Ther. 1998;12:359–363.
  • Liu X, Gai Y, Liu F, et al. Trimetazidine inhibits pressure overload-induced cardiac fibrosis through NADPH oxidase-ROS-CTGF pathway. Cardiovasc Res. 2010;88:150–158.
  • Meng D, Feng L, Chen X-J, et al. Trimetazidine improved Ca2+ handling in isoprenaline-mediated myocardial injury of rats. Exp Physiol. 2006;91:591–601.
  • Holubarsch CJF, Rohrbach M, Karrasch M, et al. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin Sci. 2007;113:205–212.
  • Luiken JJFP, Niessen HEC, Coort SLM, et al. Etomoxir-induced partial carnitine palmitoyltransferase-I (CPT-I) inhibition in vivo does not alter cardiac long-chain fatty acid uptake and oxidation rates. Biochem J. 2009;419:447–455.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.