626
Views
17
CrossRef citations to date
0
Altmetric
Review

Ribosomal S6 kinase (RSK) modulators: a patent review

&
Pages 1061-1078 | Received 14 Mar 2016, Accepted 11 Jul 2016, Published online: 01 Aug 2016

References

  • Sturgill TW, Ray LB, Erikson E, et al. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature. 1988;334(6184):715–718.
  • Erikson E, Maller JL. A protein kinase from Xenopus eggs specific for ribosomal protein S6. Proc Natl Acad Sci USA. 1985;82(3):742–746.
  • Jones SW, Erikson E, Blenis J, et al. A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are each similar to distinct protein kinases. Proc Natl Acad Sci USA. 1988;85(10):3377–3381.
  • Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene. 2004;23(18):3151–3171.
  • Roux PP, Shahbazian D, Vu H, et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem. 2007;282(19):14056–14064.
  • Pereira PM, Schneider A, Pannetier S, et al. Coffin-Lowry syndrome. Eur J Hum Genet: EJHG. 2010;18(6):627–633.
  • Facher JJ, Regier EJ, Jacobs GH, et al. Cardiomyopathy in Coffin-Lowry syndrome. Am J Med Genet A. 2004;128A(2):176–178.
  • Schneider A, Mehmood T, Pannetier S, et al. Altered ERK/MAPK signaling in the hippocampus of the mrsk2_KO mouse model of Coffin-Lowry syndrome. J Neurochem. 2011;119(3):447–459.
  • Poirier R, Jacquot S, Vaillend C, et al. Deletion of the Coffin-Lowry syndrome gene RSK2 in mice is associated with impaired spatial learning and reduced control of exploratory behavior. Behav Genet. 2007;37(1):31–50.
  • Yang X, Matsuda K, Bialek P, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry syndrome. Cell. 2004;117(3):387–398.
  • Putz G, Bertolucci F, Raabe T, et al. The S6KII (RSK) gene of Drosophila melanogaster differentially affects an operant and a classical learning task. J Neurosci. 2004;24(44):9745–9751.
  • Dumont J, Umbhauer M, Rassinier P, et al. p90RSK is not involved in cytostatic factor arrest in mouse oocytes. J Cell Biol. 2005;169(2):227–231.
  • Zeniou M, Ding T, Trivier E, et al. Expression analysis of RSK gene family members: the RSK2 gene, mutated in Coffin-Lowry syndrome, is prominently expressed in brain structures essential for cognitive function and learning. Hum Mol Genet. 2002;11(23):2929–2940.
  • Romeo Y, Zhang X, Roux PP. Regulation and function of the RSK family of protein kinases. Biochem J. 2012;441(2):553–569.
  • Ohno S. Evolution by gene duplication. Berlin, New York: Springer-Verlag; 1970.
  • Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3(10):e314.
  • Fisher TL, Blenis J. Evidence for two catalytically active kinase domains in pp90RSK. Mol Cell Biol. 1996;16(3):1212–1219.
  • Dummler BA, Hauge C, Silber J, et al. Functional characterization of human RSK4, a new 90-kDa ribosomal S6 kinase, reveals constitutive activation in most cell types. J Biol Chem. 2005;280(14):13304–13314.
  • Dalby KN, Morrice N, Caudwell FB, et al. Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90RSK that are inducible by MAPK. J Biol Chem. 1998;273(3):1496–1505.
  • Smith JA, Poteet-Smith CE, Malarkey K, et al. Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. J Biol Chem. 1999;274(5):2893–2898.
  • Kang S, Dong S, Gu TL, et al. FGFR3 activates RSK2 to mediate hematopoietic transformation through tyrosine phosphorylation of RSK2 and activation of the MEK/ERK pathway. Cancer Cell. 2007;12(3):201–214.
  • Kang S, Dong S, Guo A, et al. Epidermal growth factor stimulates RSK2 activation through activation of the MEK/ERK pathway and src-dependent tyrosine phosphorylation of RSK2 at Tyr-529. J Biol Chem. 2008;283(8):4652–4657.
  • Vaidyanathan H, Ramos JW. RSK2 activity is regulated by its interaction with PEA-15. J Biol Chem. 2003;278(34):32367–32372.
  • Roux PP, Richards SA, Blenis J. Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol Cell Biol. 2003;23(14):4796–4804.
  • Jensen CJ, Buch MB, Krag TO, et al. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. J Biol Chem. 1999;274(38):27168–27176.
  • Cohen MS, Hadjivassiliou H, Taunton J. A clickable inhibitor reveals context-dependent autoactivation of p90 RSK. Nat Chem Biol. 2007;3(3):156–160.
  • Zaru R, Ronkina N, Gaestel M, et al. The MAPK-activated kinase RSK controls an acute Toll-like receptor signaling response in dendritic cells and is activated through two distinct pathways. Nat Immunol. 2007;8(11):1227–1235.
  • Zaru R, Edgar AJ, Hanauer A, et al. Structural and functional basis for p38-MK2-activated RSK signaling in toll-like receptor-stimulated dendritic cells. Mol Cell Biol. 2015;35(1):132–140.
  • Eisinger-Mathason TS, Andrade J, Groehler AL, et al. Codependent functions of RSK2 and the apoptosis-promoting factor TIA-1 in stress granule assembly and cell survival. Mol Cell. 2008;31(5):722–736.
  • Gao X, Chaturvedi D, Patel TB. Localization and retention of p90 ribosomal S6 kinase 1 in the nucleus: implications for its function. Mol Biol Cell. 2012;23(3):503–515.
  • Zhao Y, Bjorbaek C, Weremowicz S, et al. RSK3 encodes a novel pp90RSK isoform with a unique N-terminal sequence: growth factor-stimulated kinase function and nuclear translocation. Mol Cell Biol. 1995;15(8):4353–4363.
  • Chaturvedi D, Poppleton HM, Stringfield T, et al. Subcellular localization and biological actions of activated RSK1 are determined by its interactions with subunits of cyclic AMP-dependent protein kinase. Mol Cell Biol. 2006;26(12):4586–4600.
  • Gao X, Chaturvedi D, Patel TB. p90 ribosomal S6 kinase 1 (RSK1) and the catalytic subunit of protein kinase A (PKA) compete for binding the pseudosubstrate region of PKAR1alpha: role in the regulation of PKA and RSK1 activities. J Biol Chem. 2010;285(10):6970–6979.
  • Leighton IA, Dalby KN, Caudwell FB, et al. Comparison of the specificities of p70 S6 kinase and MAPKAP kinase-1 identifies a relatively specific substrate for p70 S6 kinase: the N-terminal kinase domain of MAPKAP kinase-1 is essential for peptide phosphorylation. FEBS Lett. 1995;375(3):289–293.
  • David JP, Mehic D, Bakiri L, et al. Essential role of RSK2 in c-Fos-dependent osteosarcoma development. J Clin Invest. 2005;115(3):664–672.
  • Elf S, Blevins D, Jin L, et al. p90RSK2 is essential for FLT3-ITD- but dispensable for BCR-ABL-induced myeloid leukemia. Blood. 2011;117(25):6885–6894.
  • Lin JX, Spolski R, Leonard WJ. Critical role for RSK2 in T-lymphocyte activation. Blood. 2008;111(2):525–533.
  • Moon HG, Yi JK, Kim HS, et al. Phosphorylation of p90RSK is associated with increased response to neoadjuvant chemotherapy in ER-positive breast cancer. BMC Cancer. 2012;12:585.
  • Stratford AL, Reipas K, Hu K, et al. Targeting p90 ribosomal S6 kinase eliminates tumor-initiating cells by inactivating Y-box binding protein-1 in triple-negative breast cancers. Stem Cells. 2012;30(7):1338–1348.
  • Clark DE, Poteet-Smith CE, Smith JA, et al. RSK2 allosterically activates estrogen receptor alpha by docking to the hormone-binding domain. EMBO J. 2001;20(13):3484–3494.
  • Joel PB, Smith J, Sturgill TW, et al. pp90RSK1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol Cell Biol. 1998;18(4):1978–1984.
  • Yamashita H, Nishio M, Kobayashi S, et al. Phosphorylation of estrogen receptor alpha serine 167 is predictive of response to endocrine therapy and increases postrelapse survival in metastatic breast cancer. Breast Cancer Res. 2005;7(5):R753–R764.
  • Yamashita H, Nishio M, Toyama T, et al. Low phosphorylation of estrogen receptor alpha (ERalpha) serine 118 and high phosphorylation of ERalpha serine 167 improve survival in ER-positive breast cancer. Endocr Relat Cancer. 2008;15(3):755–763.
  • Jiang J, Sarwar N, Peston D, et al. Phosphorylation of estrogen receptor-alpha at Ser167 is indicative of longer disease-free and overall survival in breast cancer patients. Clin Cancer Res. 2007;13(19):5769–5776.
  • Smith JA, Poteet-Smith CE, Xu Y, et al. Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res. 2005;65(3):1027–1034.
  • Berman-Booty LD, Knudsen KE. Models of neuroendocrine prostate cancer. Endocr Relat Cancer. 2015;22(1):R33–49.
  • Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22(3):298–305.
  • Clark DE, Errington TM, Smith JA, et al. The serine/threonine protein kinase, p90 ribosomal S6 kinase, is an important regulator of prostate cancer cell proliferation. Cancer Res. 2005;65(8):3108–3116.
  • Marzuka A, Huang L, Theodosakis N, et al. Melanoma treatments: advances and mechanisms. J Cell Physiol. 2015;230(11):2626–2633.
  • Cho YY, Lee MH, Lee CJ, et al. RSK2 as a key regulator in human skin cancer. Carcinogenesis. 2012;33(12):2529–2537.
  • Cho YY, Yao K, Pugliese A, et al. A regulatory mechanism for RSK2 NH(2)-terminal kinase activity. Cancer Res. 2009;69(10):4398–4406.
  • Zhu Z, Liu W, Gotlieb V. The rapidly evolving therapies for advanced melanoma-Towards immunotherapy, molecular targeted therapy, and beyond. Crit Rev Oncol Hematol. 2016;99:91–99.
  • Sacco AG, Cohen EE. Current treatment options for recurrent or metastatic head and neck squamous cell carcinoma. J Clin Oncol. 2015;33(29):3305–3313.
  • Kang S, Elf S, Lythgoe K, et al. p90 ribosomal S6 kinase 2 promotes invasion and metastasis of human head and neck squamous cell carcinoma cells. J Clin Invest. 2010;120(4):1165–1177.
  • Li D, Jin L, Alesi GN, et al. The prometastatic ribosomal S6 kinase 2-cAMP response element-binding protein (RSK2-CREB) signaling pathway up-regulates the actin-binding protein fascin-1 to promote tumor metastasis. J Biol Chem. 2013;288(45):32528–32538.
  • Lara R, Mauri FA, Taylor H, et al. An siRNA screen identifies RSK1 as a key modulator of lung cancer metastasis. Oncogene. 2011;30(32):3513–3521.
  • Zhou Y, Yamada N, Tanaka T, et al. Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2. Nat Commun. 2015;6:7679.
  • Bignone PA, Lee KY, Liu Y, et al. RPS6KA2, a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer. Oncogene. 2007;26(5):683–700.
  • Milosevic N, Kuhnemuth B, Muhlberg L, et al. Synthetic lethality screen identifies RPS6KA2 as modifier of epidermal growth factor receptor activity in pancreatic cancer. Neoplasia. 2013;15(12):1354–1362.
  • Arechavaleta-Velasco F, Zeferino-Toquero M, Estrada-Moscoso I, et al. Ribosomal S6 kinase 4 (RSK4) expression in ovarian tumors and its regulation by antineoplastic drugs in ovarian cancer cell lines. Med Oncol. 2016;33(2):11.
  • Lopez-Vicente L, Armengol G, Pons B, et al. Regulation of replicative and stress-induced senescence by RSK4, which is down-regulated in human tumors. Clin Cancer Res. 2009;15(14):4546–4553.
  • Cai J, Ma H, Huang F, et al. Low expression of RSK4 predicts poor prognosis in patients with colorectal cancer. Int J Clin Exp Pathol. 2014;7(8):4959–4970.
  • Dewdney SB, Rimel BJ, Thaker PH, et al. Aberrant methylation of the X-linked ribosomal S6 kinase RPS6KA6 (RSK4) in endometrial cancers. Clin Cancer Res. 2011;17(8):2120–2129.
  • Li Q, Jiang Y, Wei W, et al. Frequent epigenetic inactivation of RSK4 by promoter methylation in cancerous and non-cancerous tissues of breast cancer. Med Oncol. 2014;31(1):793.
  • Thakur A, Rahman KW, Wu J, et al. Aberrant expression of X-linked genes RbAp46, RSK4, and Cldn2 in breast cancer. Mol Cancer Res. 2007;5(2):171–181.
  • Serra V, Eichhorn PJ, Garcia-Garcia C, et al. RSK3/4 mediate resistance to PI3K pathway inhibitors in breast cancer. J Clin Invest. 2013;123(6):2551–2563.
  • Fan L, Li P, Yin Z, et al. Ribosomal s6 protein kinase 4: a prognostic factor for renal cell carcinoma. Br J Cancer. 2013;109(5):1137–1146.
  • Takeishi Y, Huang Q, Abe J, et al. Activation of mitogen-activated protein kinases and p90 ribosomal S6 kinase in failing human hearts with dilated cardiomyopathy. Cardiovasc Res. 2002;53(1):131–137.
  • Takahashi E, Abe J, Berk BC. Angiotensin II stimulates p90RSK in vascular smooth muscle cells. A potential Na(+)-H+ exchanger kinase. Circ Res. 1997;81(2):268–273.
  • Takeishi Y, Abe J, Lee JD, et al. Differential regulation of p90 ribosomal S6 kinase and big mitogen-activated protein kinase 1 by ischemia/reperfusion and oxidative stress in perfused guinea pig hearts. Circ Res. 1999;85(12):1164–1172.
  • Garciarena CD, Fantinelli JC, Caldiz CI, et al. Myocardial reperfusion injury: reactive oxygen species vs. NHE-1 reactivation. Cell Physiol Biochem. 2011;27(1):13–22.
  • Itoh S, Ding B, Shishido T, et al. Role of p90 ribosomal S6 kinase-mediated prorenin-converting enzyme in ischemic and diabetic myocardium. Circulation. 2006;113(14):1787–1798.
  • Cheng WH, Lu PJ, Ho WY, et al. Angiotensin II inhibits neuronal nitric oxide synthase activation through the ERK1/2-RSK signaling pathway to modulate central control of blood pressure. Circ Res. 2010;106(4):788–795.
  • Doyon P, Servant MJ. Tumor necrosis factor receptor-associated factor-6 and ribosomal S6 kinase intracellular pathways link the angiotensin II AT1 receptor to the phosphorylation and activation of the IkappaB kinase complex in vascular smooth muscle cells. J Biol Chem. 2010;285(40):30708–30718.
  • Le NT, Heo KS, Takei Y, et al. A crucial role for p90RSK-mediated reduction of ERK5 transcriptional activity in endothelial dysfunction and atherosclerosis. Circulation. 2013;127(4):486–499.
  • Heo KS, Le NT, Cushman HJ, et al. Disturbed flow-activated p90RSK kinase accelerates atherosclerosis by inhibiting SENP2 function. J Clin Invest. 2015;125(3):1299–1310.
  • Maekawa N, Abe J, Shishido T, et al. Inhibiting p90 ribosomal S6 kinase prevents (Na+)-H+ exchanger-mediated cardiac ischemia-reperfusion injury. Circulation. 2006;113(21):2516–2523.
  • Le NT, Takei Y, Shishido T, et al. p90RSK targets the ERK5-CHIP ubiquitin E3 ligase activity in diabetic hearts and promotes cardiac apoptosis and dysfunction. Circ Res. 2012;110(4):536–550.
  • Shi X, O’Neill MM, MacDonnell S, et al. The RSK inhibitor BIX02565 limits cardiac ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther. 2016;21(2):177–186.
  • Fryer RM, Muthukumarana A, Chen RR, et al. Mitigation of off-target adrenergic binding and effects on cardiovascular function in the discovery of novel ribosomal S6 kinase 2 inhibitors. J Pharmacol Exp Ther. 2012;340(3):492–500.
  • Moor AN, Gan XT, Karmazyn M, et al. Activation of Na+/H+ exchanger-directed protein kinases in the ischemic and ischemic-reperfused rat myocardium. J Biol Chem. 2001;276(19):16113–16122.
  • Cuello F, Snabaitis AK, Cohen MS, et al. Evidence for direct regulation of myocardial Na+/H+ exchanger isoform 1 phosphorylation and activity by 90-kDa ribosomal S6 kinase (RSK): effects of the novel and specific RSK inhibitor FMK on responses to alpha1-adrenergic stimulation. Mol Pharmacol. 2007;71(3):799–806.
  • Karmazyn M. NHE-1: still a viable therapeutic target. J Mol Cell Cardiol. 2013;61:77–82.
  • Murphy E, Allen DG. Why did the NHE inhibitor clinical trials fail? J Mol Cell Cardiol. 2009;46(2):137–141.
  • Artamonov M, Momotani K, Utepbergenov D, et al. The p90 ribosomal S6 kinase (RSK) is a mediator of smooth muscle contractility. PLoS One. 2013;8(3):e58703.
  • Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389(6654):990–994.
  • Murthy SN, Nossaman BD, Kadowitz PJ. New approaches to the treatment of pulmonary hypertension: from bench to bedside. Cardiol Rev. 2010;18(2):76–84.
  • Li J, Kritzer MD, Michel JJ, et al. Anchored p90 ribosomal S6 kinase 3 is required for cardiac myocyte hypertrophy. Circ Res. 2013;112(1):128–139.
  • Passariello CL, Gayanilo M, Kritzer MD, et al. p90 ribosomal S6 kinase 3 contributes to cardiac insufficiency in alpha-tropomyosin Glu180Gly transgenic mice. Am J Physiol Heart Circulatory Physiol. 2013;305(7):H1010–H1019.
  • Fu B, Kuang E, Li W, et al. Activation of p90 ribosomal S6 kinases by ORF45 of Kaposi’s sarcoma-associated herpesvirus is critical for optimal production of infectious viruses. J Virol. 2015;89(1):195–207.
  • Kuang E, Tang Q, Maul GG, et al. Activation of p90 ribosomal S6 kinase by ORF45 of Kaposi’s sarcoma-associated herpesvirus and its role in viral lytic replication. J Virol. 2008;82(4):1838–1850.
  • Karijolich J, Zhao Y, Peterson B, et al. Kaposi’s sarcoma-associated herpesvirus ORF45 mediates transcriptional activation of the HIV-1 long terminal repeat via RSK2. J Virol. 2014;88(12):7024–7035.
  • Avey D, Tepper S, Li W, et al. Phosphoproteomic analysis of KSHV-infected cells reveals roles of ORF45-activated RSK during lytic replication. PLoS Pathog. 2015;11(7):e1004993.
  • McCoy MW, Marre ML, Lesser CF, et al. The C-terminal tail of Yersinia pseudotuberculosis YopM is critical for interacting with RSK1 and for virulence. Infect Immun. 2010;78(6):2584–2598.
  • Nusrat S, Khan MS, Fazili J, et al. Cirrhosis and its complications: evidence based treatment. World Journal of Gastroenterology. 2014;20(18):5442–5460.
  • Buck M, Chojkier M. A ribosomal S-6 kinase-mediated signal to C/EBP-beta is critical for the development of liver fibrosis. PLoS One. 2007;2(12):e1372.
  • Morales-Ibanez O, Affo S, Rodrigo-Torres D, et al. Kinase analysis in alcoholic hepatitis identifies p90RSK as a potential mediator of liver fibrogenesis. Gut. 2015;65(5):840–851.
  • Buck M, Poli V, van der Geer P, et al. Phosphorylation of rat serine 105 or mouse threonine 217 in C/EBP beta is required for hepatocyte proliferation induced by TGF alpha. Mol Cell. 1999;4(6):1087–1092.
  • Yang MF, Xie J, Gu XY, et al. Involvement of 90-kuD ribosomal S6 kinase in collagen type I expression in rat hepatic fibrosis. World J Gastroenterol. 2009;15(17):2109–2115.
  • Buck M, Poli V, Hunter T, et al. C/EBPbeta phosphorylation by RSK creates a functional XEXD caspase inhibitory box critical for cell survival. Mol Cell. 2001;8(4):807–816.
  • Buck M, Chojkier M. C/EBPbeta-Thr217 phosphorylation signaling contributes to the development of lung injury and fibrosis in mice. PLoS One. 2011;6(10):e25497.
  • Hutchinson J, Fogarty A, Hubbard R, et al. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J: Off J Eur Soc Clin Respir Physiol. 2015;46(3):795–806.
  • Falconer J, Buckley CD. Rheumatoid arthritis. The two faces of RSK2 in hyperplastic disease. Nat Rev Rheumatol. 2015;11(4):203–205.
  • Derer A, Bohm C, Grotsch B, et al. RSK2 controls synovial fibroblast hyperplasia and the course of arthritis. Ann Rheum Dis. 2016;75(2):413–421.
  • Boyer SJ, Gao DA, Guo X, et al. Heterocyclic compounds containing an indole core. Patent No. US 9,150,577 B2. 2015.
  • De Cesare D, Jacquot S, Hanauer A, et al. RSK-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proc Natl Acad Sci USA. 1998;95(21):12202–12207.
  • Taunton J, Cohen M, Shokat K, et al. Selective serine/threonine kinase inhibitors. Patent No. US 7,687,506 B2. 2010.
  • Hecht SM, Maloney DJ. Synthesis of inhibitors of p90RSK. Patent No. US 7,605,241 B2. 2009.
  • Smith JA, Hecht SM, Lannigan-Macara DA, et al. Rhamnose substituents of SL0101 and therapeutic use of thereof. Patent No. US 8,426,568 B2. 2013.
  • Hecht SM, Lannigan-Macara DA, Smith JA, et al. Synthesis and identification of novel RSK-specific inhibitors. Patent No. US 9,040,673 B2. 2015.
  • Sim T, Lee HS, Ren P, et al. Compounds and compositions as protein kinase inhibitors. Patent No. US 7,371,750 B2. 2008.
  • Ren P, Xia W, Gray NS, et al. Compounds and compositions as protein kinase inhibitors. Patent No. US 7,623,038 B2. 2008.
  • Xie Y, Zhang G, Wang X, et al. Compounds and compositions as protein kinase inhibitors. Patent No. US 7,868,018 B2. 2011.
  • Nagle A, Gray SN, Liu Y, et al. Substituted purrolo[2,3-D]pyrimidines and compositions as protein kinase inhibitors. Patent No. US 8,183,248 B2. 2012.
  • Wan Y, Mi Y, Fan Y, et al. Compounds and compositions as protein kinase inhibitors. Patent No. US 8,101,608 B2. 2012.
  • Nagle A, Gray NS. Compounds and compositions as protein kinase inhibitors. Patent No. US 8,592,433 B2. 2013.
  • Shoemaker R, Cardelina J, Currens M, et al. Kinase inhibitors, compositions thereof, and methods of use therewith. Patent no. US 8,765,802 B2. 2014.
  • Kim SG, Lee SJ, Park EY, et al. 4,5,6,7-tetrahydro-[1,2]dithiolo[4,3-C]pyridine-3-thione compounds. Patent No. US 7,435,819 B2. 2008.
  • Kirrane TM, Boyer SJ, Burke J, et al. Indole RSK inhibitors. Part 2: optimization of cell potency and kinase selectivity. Bioorg Med Chem Lett. 2012;22(1):738–742.
  • Najafi A, Sequeira V, Kuster DW, et al. Beta-adrenergic receptor signalling and its functional consequences in the diseased heart. Eur J Clin Invest. 2016;46(4):362–374.
  • Endicott JA, Noble ME, Johnson LN. The structural basis for control of eukaryotic protein kinases. Annu Rev Biochem. 2012;81:587–613.
  • Zuccotto F, Ardini E, Casale E, et al. Through the “gatekeeper door”: exploiting the active kinase conformation. J Med Chem. 2010;53(7):2681–2694.
  • Cohen MS, Zhang C, Shokat KM, et al. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science. 2005;308(5726):1318–1321.
  • Noble ME, Endicott JA, Johnson LN. Protein kinase inhibitors: insights into drug design from structure. Science. 2004;303(5665):1800–1805.
  • Bain J, Plater L, Elliott M, et al. The selectivity of protein kinase inhibitors: a further update. Biochem J. 2007;408(3):297–315.
  • Smith JA, Maloney DJ, Hecht SM, et al. Structural basis for the activity of the RSK-specific inhibitor, SL0101. Bioorg Med Chem. 2007;15(14):5018–5034.
  • Utepbergenov D, Derewenda U, Olekhnovich N, et al. Insights into the inhibition of the p90 ribosomal S6 kinase (RSK) by the flavonol glycoside SL0101 from the 1.5 A crystal structure of the N-terminal domain of RSK2 with bound inhibitor. Biochemistry. 2012;51(33):6499–6510.
  • Derewenda U, Artamonov M, Szukalska G, et al. Identification of quercitrin as an inhibitor of the p90 S6 ribosomal kinase (RSK): structure of its complex with the N-terminal domain of RSK2 at 1.8 A resolution. Acta Crystallogr D Biol Crystallogr. 2013;69(Pt2):266–275.
  • Smith JA, Maloney DJ, Clark DE, et al. Influence of rhamnose substituents on the potency of SL0101, an inhibitor of the Ser/Thr kinase, RSK. Bioorg Med Chem. 2006;14(17):6034–6042.
  • Mrozowski RM, Vemula R, Wu B, et al. Improving the affinity of SL0101 for RSK using structure-based design. ACS Med Chem Lett. 2012;4(2):175–179.
  • Li M, Li Y, Mrozowski RM, et al. Synthesis and structure-activity relationship study of 5a-carbasugar analogues of SL0101. ACS Med Chem Lett. 2015;6(1):95–99.
  • Hentschke M, Berneking L, Belmar Campos C, et al. Yersinia virulence factor YopM induces sustained RSK activation by interfering with dephosphorylation. PLoS One. 2010;5:10.
  • Liu Y, Gray NS. Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol. 2006;2(7):358–364.
  • Backes A, Zech B, Felber B, et al. Small-molecule inhibitors binding to protein kinase. Part II: the novel pharmacophore approach of type II and type III inhibition. Expert Opin Drug Discov. 2008;3(12):1427–1449.
  • Alton GR, Lunney EA. Targeting the unactivated conformations of protein kinases for small molecule drug discovery. Expert Opin Drug Discov. 2008;3(6):595–605.
  • Okram B, Nagle A, Adrian FJ, et al. A general strategy for creating “inactive-conformation” abl inhibitors. Chem Biol. 2006;13(7):779–786.
  • Sapkota GP, Cummings L, Newell FS, et al. BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms in vitro and in vivo. Biochem J. 2007;401(1):29–38.
  • Duran A, Linz G. Process for the manufacture of fused piperazin-2-one derivatives. Patent application No. US 2006/0122393 A1. 2006.
  • Aronchik I, Appleton BA, Basham SE, et al. Novel potent and selective inhibitors of p90 ribosomal S6 kinase reveal the heterogeneity of RSK function in MAPK-driven cancers. Mol Cancer Res. 2014;12(5):803–812.
  • Jain R, Mathur M, Lan J, et al. Discovery of potent and selective RSK inhibitors as biological probes. J Med Chem. 2015;58(17):6766–6783.
  • Kang KW, Kim YG, Cho MK, et al. Oltipraz regenerates cirrhotic liver through CCAAT/enhancer binding protein-mediated stellate cell inactivation. FASEB J: Off Publ Fed Am Soc Exp Biol. 2002;16(14):1988–1990.
  • Zhang Y, Munday R. Dithiolethiones for cancer chemoprevention: where do we stand? Mol Cancer Ther. 2008;7(11):3470–3479.
  • Kim SG, Kim YM, Choi JY, et al. Oltipraz therapy in patients with liver fibrosis or cirrhosis: a randomized, double-blind, placebo-controlled phase II trial. J Pharm Pharmacol. 2011;63(5):627–635.
  • Kodama H, Fukuda K, Pan J, et al. Significance of ERK cascade compared with JAK/STAT and PI3-K pathway in gp130-mediated cardiac hypertrophy. Am J Physiol Heart Circul Physiol. 2000;279(4):H1635–H1644.
  • Sadoshima J, Qiu Z, Morgan JP, et al. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes. The critical role of Ca(2+)-dependent signaling. Circ Res. 1995;76(1):1–15.
  • Seko Y, Tobe K, Ueki K, et al. Hypoxia and hypoxia/reoxygenation activate Raf-1, mitogen-activated protein kinase kinase, mitogen-activated protein kinases, and S6 kinase in cultured rat cardiac myocytes. Circ Res. 1996;78(1):82–90.
  • Martinez EC, Passariello CL, Li J, et al. RSK3: a regulator of pathological cardiac remodeling. IUBMB Life. 2015;67(5):331–337.
  • Passariello CL, Li J, Dodge-Kafka K, et al. mAKAP-a master scaffold for cardiac remodeling. J Cardiovasc Pharmacol. 2015;65(3):218–225.
  • Kapiloff MS, Li J, Kritzer M, et al. Treatment of heart disease by inhibition of the action of ribosomal S6 kinase 3 (RSK3). Patent No. US 9,132,174 B2. 2015.
  • Chaturvedi D, Cohen MS, Taunton J, et al. The PKARIalpha subunit of protein kinase A modulates the activation of p90RSK1 and its function. J Biol Chem. 2009;284(35):23670–23681.
  • Edgar AJ, Trost M, Watts C, et al. A combination of SILAC and nucleotide acyl phosphate labelling reveals unexpected targets of the RSK inhibitor BI-D1870. Biosci Rep. 2014;34:e00091.
  • Doehn U, Hauge C, Frank SR, et al. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol Cell. 2009;35(4):511–522.
  • Mrozowski RM, Sandusky ZM, Vemula R, et al. De novo synthesis and biological evaluation of C6ʹ’-substituted C4ʹ’-amide analogues of SL0101. Org Lett. 2014;16(22):5996–5999.
  • Takada I, Yogiashi Y, Makishima M. The ribosomal S6 kinase inhibitor BI-D1870 ameliorated experimental autoimmune encephalomyelitis in mice. Immunobiology. 2016;221(2):188–192.
  • Uehling DE, Harris PA. Recent progress on MAP kinase pathway inhibitors. Bioorg Med Chem Lett. 2015;25(19):4047–4056.
  • Samatar AA, Poulikakos PI. Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discovery. 2014;13(12):928–942.
  • Hoeflich KP, O’Brien C, Boyd Z, et al. In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin Cancer Res. 2009;15(14):4649–4664.
  • Turke AB, Song Y, Costa C, et al. MEK inhibition leads to PI3K/AKT activation by relieving a negative feedback on ERBB receptors. Cancer Res. 2012;72(13):3228–3237.
  • Peeper DS, Smit A, Vogel CJ. p90RSK in combination with RAF/ERK/MEK. Patent application WO2015041534 A1. 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.