592
Views
23
CrossRef citations to date
0
Altmetric
Review

Formyl peptide receptor modulators: a patent review and potential applications for inflammatory diseases (2012-2015)

, &
Pages 1139-1156 | Received 18 May 2016, Accepted 20 Jul 2016, Published online: 03 Aug 2016

References

  • von Andrian UH, Berger EM, Ramezani L, et al. In vivo behavior of neutrophils from two patients with distinct inherited leukocyte adhesion deficiency syndromes. J Clin Invest. 1993 Jun;91(6):2893–2897.
  • Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol. 2012 Sep 3;198(5):773–783.
  • Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013 Mar;13(3):159–175.
  • Kumar V, Sharma A. Neutrophils: Cinderella of innate immune system. Int Immunopharmacol. 2010 Nov;10(11):1325–1334.
  • Boulay F, Tardif M, Brouchon L, et al.. Synthesis and use of a novel N-formyl peptide derivative to isolate a human N-formyl peptide receptor Cdna. Biochem Bioph Res Co. 1990 May 16;168(3):1103–1109.
  • Hazeldine J, Hampson P, Lord JM. The impact of trauma on neutrophil function. Injury. 2014 Dec;45(12):1824–1833.
  • Le YY, Murphy PM, Wang JM. Formyl-peptide receptors revisited. Trends Immunol. 2002 Nov;23(11):541–548.
  • Lu B, Gerard NP, Eddy RL, et al. Mapping of genes for the human C5a receptor (C5AR), human FMLP receptor (FPR), and two FMLP receptor homologue orphan receptors (FPRH1, FPRH2) to chromosome 19.. Genomics. 1992 Jun;13(2):437–440.
  • Migeotte I, Communi D, Parmentier M. Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev. 2006 Dec;17(6):501–519.
  • Sodin-Semrl S, Spagnolo A, Mikus R, et al. Opposing regulation of interleukin-8 and NF-kappaB responses by lipoxin A4 and serum amyloid A via the common lipoxin A receptor. Int J Immunopathol Pharmacol. 2004 May-Aug;17(2):145–156.
  • Kao W, Gu R, Jia Y, et al. A formyl peptide receptor agonist suppresses inflammation and bone damage in arthritis. Br J Pharmacol. 2014 Sep;171(17):4087–4096.
  • Schepetkin IA, Kirpotina LN, Khlebnikov AI, et al.. Antagonism of human formyl peptide receptor 1 (FPR1) by chromones and related isoflavones. Biochem Pharmacol. 2014 Dec 15;92(4):627–641.
  • Cevik-Aras H, Kalderén C, Jenmalm Jensen A, et al.. A non-peptide receptor inhibitor with selectivity for one of the neutrophil formyl peptide receptors, FPR 1. Biochem Pharmacol. 2012 Jun 15;83(12):1655–1662.
  • Stenfeldt A-L, Karlsson J, Wennerås C, et al. Cyclosporin H, Boc-MLF and Boc-FLFLF are antagonists that preferentially inhibit activity triggered through the formyl peptide receptor. Inflammation. 2007 Dec;30(6):224–229.
  • Thorén FB, Karlsson J, Dahlgren C, et al.. The anionic amphiphile SDS is an antagonist for the human neutrophil formyl peptide receptor 1. Biochem Pharmacol. 2010 Aug 1;80(3):389–395.
  • Unitt J, Fagura M, Phillips T, et al.. Discovery of small molecule human FPR1 receptor antagonists. Bioorg Med Chem Lett. 2011 May 15;21(10):2991–2997.
  • Liu MY, Zhao JH, Chen KQ, et al.. G protein-coupled receptor FPR1 as a pharmacologic target in inflammation and human glioblastoma. Int Immunopharmacol. 2012 Nov;14(3):283–288.
  • Cheng T-Y, Wu M-S, Lin J-T, et al. Formyl Peptide Receptor 1 Expression Is Associated with Tumor Progression and Survival in Gastric Cancer. Anticancer Res. 2014 May;34(5):2223–2229.
  • Dufton N, Perretti M. Therapeutic anti-inflammatory potential of formyl-peptide receptor agonists. Pharmacol Ther. 2010 Aug;127(2):175–188.
  • Tsai Y-F, Yu H-P, Chung P-J, et al. Osthol attenuates neutrophilic oxidative stress and hemorrhagic shock-induced lung injury via inhibition of phosphodiesterase 4. Free Radic Biol Med. 2015;89:387–400.
  • Ye RD, Boulay F, Wang JM, et al. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the Formyl Peptide Receptor (FPR) Family. Pharmacol Rev. 2009 Jun;61(2):119–161.
  • Boulay F, Tardif M, Brouchon L, et al.. The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors. Biochemistry. 1990 Dec 18;29(50):11123–11133.
  • Fu H, Karlsson J, Bylund J, et al. Ligand recognition and activation of formyl peptide receptors in neutrophils. J Leukoc Biol. 2006 Feb;79(2):247–256.
  • Ye RD, Cavanagh SL, Quehenberger O, et al.. Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor. Biochem Biophys Res Commun. 1992 Apr 30;184(2):582–589.
  • Carp H. Mitochondrial N-formylmethionyl proteins as chemoattractants for neutrophils. J Exp Med. 1982 Jan 1;155(1):264–275.
  • Dorward DA, Lucas CD, Chapman GB, et al. The role of formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute inflammation. Am J Pathol. 2015 May;185(5):1172–1184.
  • Schiffmann E, Corcoran BA, Wahl SM. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1059–1062.
  • Panaro MA, Mitolo V. Cellular responses to FMLP challenging: a mini-review. Immunopharmacol Immunotoxicol. 1999 Aug;21(3):397–419.
  • Cattaneo F, Guerra G, Parisi M, et al. Expression of Formyl-peptide Receptors in Human Lung Carcinoma. Anticancer Res. 2015 May;35(5):2769–2774.
  • Huang J, Chen K, Huang J, et al. Regulation of the leucocyte chemoattractant receptor FPR in glioblastoma cells by cell differentiation. Carcinogenesis. 2009 Feb;30(2):348–355.
  • Zhan Y, Zhang H, Li J, et al. A novel biphenyl urea derivate inhibits the invasion of breast cancer through the modulation of CXCR4. J Cell Mol Med. 2015 Jul;19(7):1614–1623.
  • McDonald B. Intravascular danger signals guide neutrophils to sites of sterile inflammation (October, pg 362, 2010). Science. 2011 Mar 25;331(6024):1517–17.
  • Zhang Q, Raoof M, Chen Y, et al.. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010 Mar 4;464(7285):104–107.
  • Yang S-C, Hwang T-L. The potential impacts of formyl peptide receptor 1 in inflammatory diseases. Front Biosci (Elite Ed). 2016;8:436–449.
  • Cattaneo F, Parisi M, Ammendola R. Distinct signaling cascades elicited by different formyl peptide receptor 2 (FPR2) agonists. Int J Mol Sci. 2013;14(4):7193–7230.
  • Vago JP, Nogueira CR, Tavares LP, et al. Annexin A1 modulates natural and glucocorticoid-induced resolution of inflammation by enhancing neutrophil apoptosis. J Leukoc Biol. 2012 Aug;92(2):249–258.
  • Ying G, Iribarren P, Zhou Y, et al.. Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor. J Immunol. 2004 Jun 1;172(11):7078–7085.
  • Bozinovski S, Uddin M, Vlahos R, et al.. Serum amyloid A opposes lipoxin A₄ to mediate glucocorticoid refractory lung inflammation in chronic obstructive pulmonary disease.. Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):935–940.
  • Le Y, Gong W, Tiffany HL, et al.. Amyloid (beta)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J Neurosci. 2001 Jan 15;21(2):RC123.
  • Resnati M, Pallavicini I, Wang JM, et al.. The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1359–1364.
  • Devosse T, Dutoit R, Migeotte I, et al.. Processing of HEBP1 by Cathepsin D Gives Rise to F2L, the Agonist of Formyl Peptide Receptor 3. J Immunol. 2011 Aug 1;187(3):1475–1485.
  • Scapini P, Pereira S, Zhang H, et al. Multiple roles of Lyn kinase in myeloid cell signaling and function. Immunol Rev. 2009 Mar;228(1):23–40.
  • Mócsai A, Jakus Z, Vántus T, et al.. Kinase pathways in chemoattractant-induced degranulation of neutrophils: the role of p38 mitogen-activated protein kinase activated by Src family kinases. J Immunol. 2000 Apr 15;164(8):4321–4331.
  • Chen C-Y, Leu Y-L, Fang Y, et al. Anti-inflammatory effects of Perilla frutescens in activated human neutrophils through two independent pathways: Src family kinases and Calcium. Sci Rep. 2015;5:18204.
  • Yang S-C, Chung P-J, Ho C-M, et al.. Propofol inhibits superoxide production, elastase release, and chemotaxis in formyl peptide-activated human neutrophils by blocking formyl peptide receptor 1. J Immunol. 2013 Jun 15;190(12):6511–6519.
  • Yang S-C, Sung P-J, Lin C-F. Anti-inflammatory effects of secondary metabolites of marine Pseudomonas sp. in human neutrophils are through inhibiting P38 MAPK, JNK, and calcium pathways. PLoS One. 2014;9(12):e114761.
  • Selvatici R, Falzarano S, Mollica A, et al.. Signal transduction pathways triggered by selective formylpeptide analogues in human neutrophils. Eur J Pharmacol. 2006 Mar 18;534(1–3):1–11.
  • Spisani S, Pareschi MC, Buzzi M, et al. Effect of cyclic AMP level reduction on human neutrophil responses to formylated peptides. Cell Signal. 1996 Jun;8(4):269–277.
  • Crouser ED, Shao GH, Julian MW, et al. Monocyte activation by necrotic cells is promoted by mitochondrial proteins and formyl peptide receptors. Crit Care Med. 2009 Jun;37(6):2000–2009.
  • Wenceslau CF, McCarthy CG, Szasz T, et al. Mitochondrial N-formyl peptides induce cardiovascular collapse and sepsis-like syndrome. Am J Physiol Heart Circ Physiol. 2015 Apr 1;308(7):H768–77.
  • Wenceslau CF, Szasz T, McCarthy CG, et al. Mitochondrial N-formyl peptides cause airway contraction and lung neutrophil infiltration via formyl peptide receptor activation. Pulm Pharmacol Ther. 2016 Apr;37:49–56.
  • Stockley RA, Grant RA, Llewellyn-Jones CG, et al. Neutrophil formyl-peptide receptors. Relationship to peptide-induced responses and emphysema. Am J Respir Crit Care Med. 1994 Feb;149(2 Pt 1):464–468.
  • Planagumà A, Kazani S, Marigowda G, et al.. Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma. Am J Respir Crit Care Med. 2008 Sep 15;178(6):574–582.
  • Bleyl JU, Heller AR, Fehrenbach A, et al. Pretreatment with perfluorohexane vapor attenuates fMLP-induced lung injury in isolated perfused rabbit lungs. Exp Lung Res. 2010 Aug;36(6):342–351.
  • Schiffmann E, Showell HV, Corcoran BA, et al. The isolation and partial characterization of neutrophil chemotactic factors from Escherichia coli. J Immunol. 1975 Jun;114(6):1831–1837.
  • Rabiet M-J, Huet E, Boulay F. Human mitochondria-derived N-formylated peptides are novel agonists equally active on FPR and FPRL1, while Listeria monocytogenes-derived peptides preferentially activate FPR. Eur J Immunol. 2005 Aug;35(8):2486–2495.
  • Grommes J, Drechsler M, Soehnlein O. CCR5 and FPR1 mediate neutrophil recruitment in endotoxin-induced lung injury. J Innate Immun. 2014;6(1):111–116.
  • Wentworth CC, Jones RM, Kwon YM, et al. Commensal-epithelial signaling mediated via formyl peptide receptors. Am J Pathol. 2010 Dec;177(6):2782–2790.
  • Babbin BA, Jesaitis AJ, Ivanov AI, et al.. Formyl peptide receptor-1 activation enhances intestinal epithelial cell restitution through phosphatidylinositol 3-kinase-dependent activation of Rac1 and Cdc42. J Immunol. 2007 Dec 15;179(12):8112–8121.
  • Ledesma de Paolo MI, Celener Gravelle P, De Paula JA, et al. Stimulation of inflammatory mediators secretion by chemotactic peptides in rat colitis model. Acta Gastroenterol Latinoam. 1996;26(1):23–30.
  • Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002 Dec 26; 420(6917):860–867.
  • Le Y, Hu J, Gong W, et al.. Expression of functional formyl peptide receptors by human astrocytoma cell lines. J Neuroimmunol. 2000 Nov 1;111(1–2):102–108.
  • Margareto J, Leis O, Larrarte E, et al. Gene expression profiling of human gliomas reveals differences between GBM and LGA related to energy metabolism and notch signaling pathways. J Mol Neurosci. 2007;32(1):53–63.
  • Zhou Y, Bian X, Le Y, et al.. Formylpeptide receptor FPR and the rapid growth of malignant human gliomas. J Natl Cancer Inst. 2005 Jun 1;97(11):823–835.
  • Chen KD, Liu MY, Liu Y, et al. Formylpeptide receptor-2 contributes to colonic epithelial homeostasis, inflammation, and tumorigenesis. J Clin Investig. 2013 Apr;123(4):1694–1704.
  • Prevete N, Liotti F, Visciano C, et al. The formyl peptide receptor 1 exerts a tumor suppressor function in human gastric cancer by inhibiting angiogenesis. Oncogene. 2015 Jul;34(29):3826–3838.
  • Fredman G, Oh SF, Ayilavarapu S, et al. Impaired phagocytosis in localized aggressive periodontitis: rescue by Resolvin E1. PLoS One. 2011;6(9):e24422.
  • Maney P, Walters JD. Formylpeptide receptor single nucleotide polymorphism 348T>C and its relationship to polymorphonuclear leukocyte chemotaxis in aggressive periodontitis.. J Periodontol. 2009 Sep;80(9):1498–1505.
  • Jepsen K, Jepsen S. Antibiotics/antimicrobials: systemic and local administration in the therapy of mild to moderately advanced periodontitis. Periodontol 2000. 2016 Jun;71(1):82–112.
  • Goldman RC, Frost DJ, Capobianco JO, et al. Antifungal drug targets: Candida secreted aspartyl protease and fungal wall beta-glucan synthesis. Infect Agents Dis. 1995 Dec;4(4):228–247.
  • Heasley BH, Pacofsky GJ, Mamai A, et al.. Synthesis and biological evaluation of antifungal derivatives of enfumafungin as orally bioavailable inhibitors of β-1,3-glucan synthase.. Bioorg Med Chem Lett. 2012 Nov 15;22(22):6811–6816.
  • Forrest KM, Judice JK, Warren HS, et al. Compositions and methods for the treatment of fungal infections. WO2015035102A2. 2015.
  • Judice JK, Forrest K, Warren HS, et al. Compositions and methods for the treatment of fungal infections. WO2015164289A1. 2015.
  • Thongyoo P, Bonomelli C, Leatherbarrow RJ, et al.. Potent inhibitors of beta-tryptase and human leukocyte elastase based on the MCoTI-II scaffold. J Med Chem. 2009 Oct 22;52(20):6197–6200.
  • Jung F, Obrecht D, Löwe R, et al. Template -fixed peptidomimetics as inhibitors of fpr1. EP2764010A1. 2014.
  • Benson JD Antagonism of human formyl peptide receptor for treatment of disease. US20120231994A1. 2012.
  • Cardini S, Dalli J, Fineschi S, et al. Genetic ablation of the fpr1 gene confers protection from smoking-induced lung emphysema in mice. Am J Respir Cell Mol Biol. 2012 Sep;47(3):332–339.
  • Rittner HL, Hackel D, Voigt P, et al.. Mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils. PLoS Pathog. 2009 Apr;5(4):e1000362.
  • Hwang TL, Hsieh PW, Huang YT, et al. FPR1 antagonist derivatives and use thereof. US20150099691. 2015.
  • Beard RL, Donello JE, Garst ME, et al. Pharmaceutical compositions comprising 3,4- dihydroisoquinolin-2(1 h)-yl-3-phenylurea derivatives having formyl peptide receptor like-1 (fprl-1) agonist or antagonist activity. WO2012074785A1. 2012.
  • Beard RL, Donello JE, Duong TT, et al. Novel 1-(1-oxo-1,2,3,4-tetrahydroisoquinolin-7-yl)urea derivatives as n-formyl peptide receptor like-1 (fprl-1) receptor modulators. WO2012109544A1. 2012.
  • Lehmann SV, Hoeck U, Breinholdt J, et al. Characterization and chemistry of imidazolidinyl urea and diazolidinyl urea. Contact Dermatitis. 2006 Jan;54(1):50–58.
  • Beard RL, Vuligonda V, Th VU, et al. 2,5-dioxoimidazolidin-1-yl-3-urea derivatives as formyl peptide modulators. WO2015116566A1. 2015.
  • Beard RL, Vuligonda V, Vu T, et al. 2,5-dioxoimidazolidin-1-yl-3-phenylurea derivatives as formyl peptide receptor like-1 (fprl-1) receptor modulators. EP2776403A1. 2014.
  • Cui J, Ding M, Deng W, et al.. Discovery of bis-aryl urea derivatives as potent and selective Limk inhibitors: Exploring Limk1 activity and Limk1/ROCK2 selectivity through a combined computational study. Bioorg Med Chem. 2015 Dec 1;23(23):7464–7477.
  • Ravez S, Arsenlis S, Barczyk A, et al.. Synthesis and biological evaluation of di-aryl urea derivatives as c-Kit inhibitors. Bioorg Med Chem. 2015 Nov 15;23(22):7340–7347.
  • Beard RL, Duong TT, Donello JE, et al. Aryl urea derivatives as n-formyl peptide receptor like-1 (fprl-1) receptor modulators. WO2013070600A1. 2013.
  • Sun D, Lee RE. Solid-phase synthesis of a thymidinyl dipeptide urea library. J Comb Chem. 2007 May-Jun;9(3):370–385.
  • Beard RL, Duong TT, Garst ME Diphenyl urea derivatives as formyl peptide receptor modulators. WO2015042071A1. 2015.
  • Obiol-Pardo C, Alcarraz-Vizán G, Cascante M, et al. Diphenyl urea derivatives as inhibitors of transketolase: a structure-based virtual screening. PLoS One. 2012;7(3):e32276.
  • Bur D, Corminboeuf O, Cren S, et al. Bridged spiro [2.4] heptane derivatives as alx receptor and/or fprl2 agonists. WO2010134014A1. 2010.
  • Kim S-Y, Park HB, Cho J-H, et al.. Synthesis and antibacterial activities of novel oxazolidinones having spiro[2,4]heptane moieties. Bioorg Med Chem Lett. 2009 May 1;19(9):2558–2561.
  • Park HB, Jo NH, Hong JH, et al. Synthesis and in-vitro activity of novel 1beta-methylcarbapenems having spiro[2,4]heptane moieties. Arch Pharm (Weinheim). 2007 Oct;340(10):530–537.
  • Corminboeuf O, Pozzi D Fluorinated bridged spiro[2.4]heptane derivatives as alx receptor agonists. WO2013171694A1. 2013.
  • Corminboeuf O, Cren S 1-(p-tolyl)cyclopropyl substituted bridged spiro[2.4]heptane derivatives as alx receptor agonists. EP2850058A1. 2015.
  • Corminboeuf O, Cren S, Pozzi D Difluoroethyl-oxazole substituted bridged spiro[2.4]heptane derivatives as alx receptor agonists. WO2014206966A1. 2014.
  • Corminboeuf O, Cren S, Pozzi D Piperazine substituted bridged spiro[2.4]heptane derivatives as alx receptor agonists. WO2015007830A1. 2015.
  • Bur D, Corminboeuf O, Cren S, et al. Bridged spiro[2.4]heptane ester derivatives. WO2012066488A2. 2012.
  • Devkota L, Lin C-M, Strecker TE, et al.. Design, synthesis, and biological evaluation of water-soluble amino acid prodrug conjugates derived from combretastatin, dihydronaphthalene, and benzosuberene-based parent vascular disrupting agents. Bioorg Med Chem. 2016 Mar 1;24(5):938–956.
  • Beard RL, Donello JE, Garst ME, et al. Dihydronaphthalene and naphthalene derivatives as n-formyl peptide receptor like-1 (fprl-1) receptor modulators. WO2012125305A1. 2012.
  • Ai Q, Ge P, Dai J, et al.. The catalase inhibitor aminotriazole alleviates acute alcoholic liver injury. Sheng Li Xue Bao. 2015 Feb 25;67(1):97–102.
  • Lee JN, Kim S-G, Lim J-Y, et al. 3-Aminotriazole protects from CoCl2-induced ototoxicity by inhibiting the generation of reactive oxygen species and proinflammatory cytokines in mice. Arch Toxicol. 2016 Apr;90(4):781–791.
  • Bur D, Corminboeuf O, Cren S, et al. Hydroxylated aminotriazole derivatives as alx receptor agonists. WO2012077051A1. 2012.
  • Bur D, Corminboeuf O, Cren S, et al. Aminotriazole derivatives as alx agonists. WO2009077990A1. 2009.
  • Bur D, Corminboeuf O, Cren S, et al. Fluorinated aminotriazole derivatives. US8580831B2. 2013.
  • Shahwar D, Tahir MN, Mughal MS, et al. Phenyl N-phenylcarbamate. Acta Crystallogr E. 2009;65:o1363.
  • Gooyit M, Song W, Mahasenan KV, et al.. O-phenyl carbamate and phenyl urea thiiranes as selective matrix metalloproteinase-2 inhibitors that cross the blood-brain barrier. J Med Chem. 2013 Oct 24;56(20):8139–8150.
  • Beard RL, Duong TT, Garst ME Phenylcarbamate derivatives as formyl peptide receptor modulators. WO2015077451A1. 2015.
  • Beard RL, Vuligonda V, Vu T, et al. Polycyclic pyrrolidine-2,5-dione derivatives as -formyl peptide receptor like-1 (fprl-1) receptor modulators. WO2013009543A1. 2013.
  • Byrtus H, Obniska J, Czopek A, et al.. Synthesis and anticonvulsant activity of new N-Mannich bases derived from 5-cyclopropyl-5-phenyl- and 5-cyclopropyl-5-(4-chlorophenyl)-imidazolidine-2,4-diones. Bioorg Med Chem. 2011 Oct 15;19(20):6149–6156.
  • Czopek A, Sałat K, Byrtus H, et al.. Antinociceptive activity of novel amide derivatives of imidazolidine-2,4-dione in a mouse model of acute pain. Pharmacol Rep. 2016 Jan 11;68(3):529–535.
  • Beard RL, Vuligonda V, Donello JE, et al. Imidazolidine-2,4-dione derivatives as n-formyl peptide receptor 2 modulators. WO2013122953A1. 2013.
  • Beard RL, Duong TT, Donello JE, et al. (2-ureidoacetamido)alkyl derivatives as formyl peptide receptor 2 modulators. EP2838887A1. 2015.
  • Beard RL, Duong TT, Donello JE, et al. Derivatives of n-urea substituted amino acids as formyl peptide receptor modulators. WO2015009545A1. 2015.
  • Beard RL, Duong TT, Donello JE, et al. Amide derivatives of n-urea substituted amino acids as formyl peptide receptor like-1 (fprl-1) receptor modulators. EP2770989A1. 2014.
  • Bur D, Corminboeuf O, Cren S, et al. Oxazolyl-methylether derivatives as alx receptor agonists. WO2012077049A1. 2012.
  • Bur D, Corminboeuf O, Cren S, et al. Oxazole and thiazole derivatives as alx receptor agonists. EP2440536A1. 2012.
  • Haag T, Grossbach D, Winter G, et al. Crystalline potassium salt of lipoxin a4 analogs. CN101553456B. 2013.
  • Terakado M, Hirobe M, Iwahashi M, et al. Alxr agonist compound. WO2015005305A1. 2015.
  • Pieretti S, Di Giannuario A, De Felice M, et al. Stimulus-dependent specificity for annexin 1 inhibition of the inflammatory nociceptive response: the involvement of the receptor for formylated peptides. Pain. 2004 May;109(1–2):52–63.
  • Colli S, Colombo S, Tremoli E, et al. Effects of tenoxicam on superoxide anion formation, beta-glucuronidase release and fMLP binding in human neutrophils: comparison with other NSAIDs. Pharmacol Res. 1991 May;23(4):367–379.
  • Stenfeldt A-L, Karlsson J, Wennerås C, et al. The non-steroidal anti-inflammatory drug piroxicam blocks ligand binding to the formyl peptide receptor but not the formyl peptide receptor like 1. Biochem Pharmacol. 2007 Oct 1;74(7):1050–1056.
  • Krajčová A, Waldauf P, Anděl M, et al. Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care. 2015;19:398.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.