822
Views
57
CrossRef citations to date
0
Altmetric
Review

Amino acid deprivation using enzymes as a targeted therapy for cancer and viral infections

, , , &
Pages 283-297 | Received 29 Jul 2016, Accepted 25 Oct 2016, Published online: 15 Nov 2016

References

  • McGuire S. World cancer report 2014. Geneva, Switzerland: World Health Organization, international agency for research on cancer, WHO Press, 2015. Adv Nutr. 2016;7(2):418–419.
  • Cantor JR, Panayiotou V, Agnello G, et al. Engineering reduced-immunogenicity enzymes for amino acid depletion therapy in cancer. In: Wittrup KD, Gregory LV, eds. Methods Enzymol. USA: Academic Press. 2012. p. 291–319.
  • Tan Y, Xu M, Hoffman RM. Broad selective efficacy of recombinant methioninase and polyethylene glycol-modified recombinant methioninase on cancer cells In Vitro. Anticancer Res. 2010;30(4):1041–1046.
  • Guedes RL, Prosdocimi F, Fernandes GR, et al. Amino acids biosynthesis and nitrogen assimilation pathways: a great genomic deletion during eukaryotes evolution. BMC Genomics. 2011;12(Suppl 4):S2.
  • Nozaki T, Ali V, Tokoro M. Sulfur-containing amino acid metabolism in parasitic protozoa. Adv Parasitol. 2005;60:1–99.
  • Cellarier E, Durando X, Vasson MP, et al. Methionine dependency and cancer treatment. Cancer Treat Rev. 2003;29(6):489–499.
  • Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood). 2004;229(10):988–995.
  • Ho E, Beaver LM, Williams DE, et al. Dietary factors and epigenetic regulation for prostate cancer prevention. Adv Nutr. 2011;2(6):497–510.
  • Thivat E, Durando X, Demidem A, et al. A methionine-free diet associated with nitrosourea treatment down-regulates methylguanine-DNA methyl transferase activity in patients with metastatic cancer. Anticancer Res. 2007;27(4C):2779–83.
  • Geiman TM, Muegge K. DNA methylation in early development. Mol Reprod Dev. 2010;77(2):105–113.
  • Ramani K, Yang H, Kuhlenkamp J, et al. Changes in the expression of methionine adenosyltransferase genes and S-adenosylmethionine homeostasis during hepatic stellate cell activation. Hepatology. 2010;51(3):986–995.
  • Guo HY, Herrera H, Groce A, et al. Expression of the biochemical defect of methionine dependence in fresh patient tumors in primary histoculture. Cancer Res. 1993;53(11):2479–2483.
  • Hoffman RM. Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. Biochimica et biophysica acta. 1984;738(1–2):49–87.
  • Breillout F, Antoine E, Poupon MF. Methionine dependency of malignant tumors: a possible approach for therapy. J Natl Cancer Inst. 1990;82(20):1628–1632.
  • Poirson-Bichat F, Gonçalves RA, Miccoli L, et al. Methionine depletion enhances the antitumoral efficacy of cytotoxic agents in drug-resistant human tumor xenografts. Clin Cancer Res. 2000;6(2):643–653.
  • Baylin SB, Herman JG, Graff JR, et al. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–196.
  • Zingg JM, Jones PA. Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis. 1997;18(5):869–882.
  • Gualerzi CO, Pon CL. Initiation of mRNA translation in prokaryotes. Biochemistry. 1990;29(25):5881–5889.
  • Stipanuk MH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr. 2004;24(1):539–577.
  • Kozak M. Initiation of translation in prokaryotes and eukaryotes. Gene. 1999;234(2):187–208.
  • Sato D, Nozaki T. Methionine gamma-lyase: the unique reaction mechanism, physiological roles, and therapeutic applications against infectious diseases and cancers. IUBMB Life. 2009;61(11):1019–1028.
  • Miller RA. Evaluating evidence for aging. Science. 2005;310(5747):441–443. author reply 41-3.
  • Orentreich N, Matias JR, DeFelice A, et al. Low methionine ingestion by rats extends life span. J Nutr. 1993;123(2):269–274.
  • Richie JP, Leutzinger Y, Parthasarathy S, et al. Methionine restriction increases blood glutathione and longevity in F344 rats. Faseb J. 1994;8(15):1302–1307.
  • Cavuoto P, Fenech MF. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev. 2012;38(6):726–736.
  • Komninou D, Leutzinger Y, Reddy BS, et al. Methionine restriction inhibits colon carcinogenesis. Nutr Cancer. 2006;54(2):202–208.
  • Ables GP, Perrone CE, Orentreich D, et al. Methionine-restricted C57BL/6J mice are resistant to diet-induced obesity and insulin resistance but have low bone density. Plos One. 2012;7(12):e51357.
  • Yuying T, inventor; Methioninase formulations and use in diagnostic methods patent. US 6231854. 2001.
  • Sharma B, Singh S, Kanwar SS. L-methionase: a therapeutic enzyme to treat malignancies. Biomed Res Int. 2014;2014:506287.
  • Smiraglia DJ, Rush LJ, Fruhwald MC, et al. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum Mol Genet. 2001;10(13):1413–1419.
  • Tan Y, Zavala J Sr., Xu M, et al. Serum methionine depletion without side effects by methioninase in metastatic breast cancer patients. Anticancer Res. 1996 Nov–Dec;16(6c):3937–3942.
  • Tan Y, Zavala J Sr., Han Q, et al. Recombinant methioninase infusion reduces the biochemical endpoint of serum methionine with minimal toxicity in high-stage cancer patients. Anticancer Res. 1997; Sep-Oct;17(5b):3857–60.
  • Machover D, Bonnarme P, inventors; Polypeptides isolated from brevibacterium aurantiacum and their use for the treatment of cancer patent. US 20140140978. 2014.
  • Kreis W, Hession C. Biological effects of enzymatic deprivation of l-methionine in cell-culture and an experimental tumor. Cancer Res. 1973;33(8):1866–1869.
  • Xu M, Tan Y, inventors; Methioninase gene therapy for tumor treatment patent. US 6524571. 2003.
  • Li S, Yang Z, Sun X, et al., inventors; Methods for increasing protein polyethylene glycol (PEG) conjugation patent. US7799549. 2010.
  • Li S, Yang Z, Sun X, et al., inventors; Methods for increasing protein polyethylene glycol (PEG) conjugation patent. US 8465734. 2013.
  • Tan Y, inventor; High expression modules containing twoor more tandem copies of a methioninase encoding sequence patent. US 6461851. 2002
  • Yagi S, Yang Z, Li S, et al., inventors; USE OF PLP WITH PEG-rMETase IN VIVO FOR ENHANCED EFFICACY patent. US 20140205583. 2014.
  • Yuying T, inventor; Method to produce high levels of methioninase patent. US 5891704 A. 1999.
  • Stone E, Paley O, Hu J, et al. De novo engineering of a human cystathionine-γ-lyase for systemic l-methionine depletion cancer therapy. ACS Chem Biol. 2012;7(11):1822–1829.
  • Georgiou G, Stone E, Lu WC, inventors; Engineered primate l-methioninase for therapeutic purposes patent. US 20150064159. 2015.
  • Merali S, Vargas D, Franklin M, et al. S-adenosylmethionine and pneumocystis carinii. J Biol Chem. 2000;275(20):14958–14963.
  • Tan Y, Yang Z, Sun X, et al., inventors; Lyase treatment for P. carinii patent. US 7264819. 2007.
  • Rogers QR, Visek WJ. Metabolic role of urea cycle intermediates: nutritional and clinical aspects. Introduction J Nutr. 1985;115(4):505–508.
  • Klein D, Morris DR. Increased arginase activity during lymphocyte mitogenesis. Biochem Biophys Res Commun. 1978;81(1):199–204.
  • Billiar TR. Nitric oxide. Novel Biology with Clinical Relevance Ann Surg. 1995;221(4):339–349.
  • Barbul A, Rettura G, Levenson SM, et al. Arginine: a thymotropic and wound-healing promoting agent. Surg Forum. 1977;28:101–103.
  • Barbul A, Rettura G, Levenson SM, et al. Wound healing and thymotropic effects of arginine: a pituitary mechanism of action. Am J Clin Nutr. 1983;37(5):786–794.
  • Castillo L, Chapman TE, Sanchez M, et al. Plasma arginine and citrulline kinetics in adults given adequate and arginine-free diets. Proc Natl Acad Sci USA. 1993;90(16):7749–7753.
  • Haines RJ, Pendleton LC, Eichler DC. Argininosuccinate synthase: at the center of arginine metabolism. Int J Biochem Mol Biol. 2011;2(1):8–23.
  • Dillon BJ, Prieto VG, Curley SA, et al. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers. Cancer. 2004;100(4):826–833.
  • Qiu F, Huang J, Sui M. Targeting arginine metabolism pathway to treat arginine-dependent cancers. Cancer Lett. 2015 Aug 1;364(1):1–7.
  • Wheatley DN. Arginine deprivation and metabolomics: important aspects of intermediary metabolism in relation to the differential sensitivity of normal and tumour cells. Semin Cancer Biol. 2005 Aug;15(4):247–253.
  • Bobak YP, Vynnytska BO, Kurlishchuk YV, et al. Cancer cell sensitivity to arginine deprivation in vitro is not determined by endogenous levels of arginine metabolic enzymes. Cell Biol Int. 2010;34(11):1085–1089.
  • Feun LG, Kuo MT, Savaraj N. Arginine deprivation in cancer therapy. Curr Opin Clin Nutr Metab Care. 2015 Jan;18(1):78–82.
  • Shen L-J, Lin W-C, Beloussow K, et al. Resistance to the anti-proliferative activity of recombinant arginine deiminase in cell culture correlates with the endogenous enzyme, argininosuccinate synthetase. Cancer Lett. 2003;191(2):165–170.
  • Wheatley DN, Philip R, Campbell E. Arginine deprivation and tumour cell death: arginase and its inhibition. Mol Cell Biochem. 2003;244(1–2):177–185.
  • Schimke RT, Barile MF. Arginine metabolism in pleuropneumonia-like organisms isolated from mammalian cell culture. J Bacteriol. 1963;86:195–206.
  • Savaraj N, You M, Wu C, et al. Arginine deprivation, autophagy, apoptosis (AAA) for the treatment of melanoma. Curr Mol Med. 2010;10(4):405–412.
  • Archard LC, Williamson JD. The effect of arginine deprivation on the replication of vaccinia virus. J Gen Virol. 1971;12(3):249–258.
  • Goldblum N, Ravid Z, Becker Y. Effect of withdrawal of arginine and other amino acids on the synthesis of tumour and viral antigens of SV 40 virus. J Gen Virol. 1968;3(1):143–146.
  • Levine S, Buthala DA, Hamilton RD. Late stage synchronization of respiratory syncytial virus replication. Virology. 1971;45(2):390–400.
  • Minamishima Y, Benyesh-Melnick M. Arginine-dependent events in cytomegalovirus infection. Bacteriol Proc Abstr 69th Annu Meet Am Soc Microbiol. 1969;135:170.
  • Winters AL, Consigli RA, Rogers QR. A non-functional arginine biosynthetic pathway in polyoma infected-mouse embryo cells. Biochem Biophys Res Commun. 1972;47(5):1044–1050.
  • Akaike T, Maeda H. Nitric oxide and virus infection. Immunology. 2000;101(3):300–308.
  • Blond D, Raoul H, Le Grand R, et al. Nitric oxide synthesis enhances human immunodeficiency virus replication in primary human macrophages. J Virol. 2000;74(19):8904–8912.
  • Campbell IL, Samimi A, Chiang C-S. Expression of the inducible nitric oxide synthase. Correlation with neuropathology and clinical features in mice with lymphocytic choriomeningitis. J Immunol. 1994;153(8):3622–3629.
  • Ignarro LJ, Cirino G, Casini A, et al. Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol. 1999;34(6):879–886.
  • Huang YL, Xian ZS, inventors; Expression system for recombinant human arginase i patent. US 20100041101. 2010.
  • Cheng PN-M, Lam T-L, Lam W-M, et al. Pegylated recombinant human arginase (rhArg-peg5,000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res. 2007;67(1):309–317.
  • Scott L, Lamb J, Smith S, et al. Single amino acid (arginine) deprivation: rapid and selective death of cultured transformed and malignant cells. Br J Cancer. 2000;83(6):800–810.
  • Lam T-L, Wong GKY, Chow H-Y, et al. Recombinant human arginase inhibits the in vitro and in vivo proliferation of human melanoma by inducing cell cycle arrest and apoptosis. Pigment Cell Melanoma Res. 2011;24(2):366–376.
  • Hsueh EC, Knebel SM, Lo W-H, et al. Deprivation of arginine by recombinant human arginase in prostate cancer cells. J Hematol Oncol. 2012;5(1):1–6.
  • Li L, Wang Y, Chen J, et al. An engineered arginase FC protein inhibits tumor growth in vitro and in vivo. Evid Based Complement Alternat Med. 2013;2013:423129.
  • Leung YC, Lo W-H, inventors; Site-directed pegylation of arginases and the use thereof as anti-cancer and anti-viral agents patent. US 20140023628. 2014.
  • Georgiou G, Stone E, inventors; Engineered enzymes with methionine-gamma-lyase enzymes and pharmacological preparations thereof patent. US 8709407. 2014.
  • Georgiou G, Stone E, inventors; Compositions of engineered human arginases and methods for treating cancer patent. US 8440184. 2013.
  • Tepic S, Pyk P, inventors; Arginine decomposing enzyme therapeutic composition patent. US 6261557. 2001.
  • Cheng NM, Leung YC, Lo WH, inventors; Use of arginase in combination with 5FU and other compounds for treatment of human malignancies patent. US 20080292609. 2008.
  • Georgiou G, Stone E, inventor Methods for purifying pegylated arginase patent. US 8679479. 2014.
  • Cheng NM, Chen L, inventors; Utilisation combinatoire d’arginase humaine recombinante pégylée avec un médicament chimiothérapeutique/thérapeutique cible dans le traitement du cancer patent. WO 2014001956A3. 2014.
  • Cheng NM, inventor; 聚乙二醇化重组人精氨酸酶治疗白血病的应用patent. CN 103402537 A. 2013.
  • Stone EM, Glazer ES, Chantranupong L, et al. Replacing Mn(2+) with Co(2+) in human arginase i enhances cytotoxicity toward l-arginine auxotrophic cancer cell lines. ACS Chem Biol. 2010;5(3):333–342.
  • Glazer ES, Stone EM, Zhu C, et al. Bioengineered human arginase I with enhanced activity and stability controls hepatocellular and pancreatic carcinoma xenografts. Transl Oncol. 2011;4(3):138–146.
  • Foster TP, Rodriguez PC, Hill JM, et al., inventors; Methods for treatment of ocular diseases patent. US 20130344049. 2013.
  • Foster TP, Rodriguez PC, Hill JM, et al., inventors; Methods for treatment of ocular diseases patent. WO 2014003850 A2. 2014.
  • Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994;298(Pt 2):249–258.
  • Cheng NM, inventor; Pharmaceutical composition and method of treating hepatitis with arginases patent. WO 2006026915 A1. 2006.
  • Schabbauer G, Bluml S, Sahin E, et al., inventors; Methods and Compositions for Modulating the Immune System with Arginase I patent. US 20150315561. 2015.
  • Horn F. The breakdown of arginine to citrulline by Bacillus pyocyaneus. Hoppe Seylers Z Physiol Chem. 1933;216:244–247.
  • Arena ME, Saguir FM. Manca de Nadra MC. Arginine dihydrolase pathway in Lactobacillus plantarum from orange. Int J Food Microbiol. 1999;47(3):203–209.
  • Casiano-Colon A, Marquis RE. Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl Environ Microbiol. 1988;54(6):1318–1324.
  • Miyazaki K, Takaku H, Umeda M, et al. Potent growth inhibition of human tumor cells in culture by arginine deiminase purified from a culture medium of a Mycoplasma-infected cell line. Cancer Res. 1990;50(15):4522–4527.
  • McGarrity GJ, Butler GH, inventors; Protease K resistant arginine deiminase, its method of preparation and its use as an anti-neoplastic agent patent. US 5372942. 1994
  • Ashikaga T, Ashikaga T, Wang Z, et al. Development and characterization of macrophage hybridomas derived from murine peritoneal exudate cells. Biosci Biotech Bioch. 2014;58(5):839–842.
  • Takaku H, Takase M, Abe S, et al. In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. Int J Cancer Suppl. 1992;51(2):244–249.
  • Sugimura K, Ohno T, Kusuyama T, et al. High sensitivity of human melanoma cell lines to the growth inhibitory activity of mycoplasmal arginine deiminase in vitro. Melanoma Res. 1992;2(3):191–196.
  • Beloussow K, Wang L, Wu J, et al. Recombinant arginine deiminase as a potential anti-angiogenic agent. Cancer Lett. 2002;183(2):155–162.
  • Park IS, Kang SW, Shin YJ, et al. Arginine deiminase: a potential inhibitor of angiogenesis and tumour growth. Br J Cancer. 2003;89(5):907–914.
  • Yoon CY, Yoon C-Y, Shim YJ, et al. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation viaarginine deiminase. Int J Cancer Suppl. 2007;120(4):897–905.
  • Min B-H, Park M-O, Kim M-Y, et al., inventors; Pharmaceutical composition comprising arginine deiminase for inhibiting angiogenesis patent. US 7413735. 2008.
  • Liu J, Ma J, Wu Z, et al. Arginine deiminase augments the chemosensitivity of argininosuccinate synthetase-deficient pancreatic cancer cells to gemcitabine via inhibition of NF-kappaB signaling. BMC Cancer. 2014;14:686.
  • Ensor CM, Holtsberg FW, Bomalaski JS, et al. Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 2002;62(19):5443–5450.
  • Qiu F, Chen YR, Liu X, et al. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci Signal. 2014;7(319):ra31–ra31.
  • Fiipula DR, Wang M, inventors; Arginine deiminase derived from mycoplasma arthritidis and polymer conjugates containing the same patent. US 6132713. 2000.
  • Filpula DR, Wang M, inventors; Arginine deiminase derived from Mycoplasma arthritidis and polymer conjugates containing the same patent. US 5916793. 1999.
  • Filpula DR, Wang M, inventors; Arginine deminase derived from mycoplasma arthritidis and polymer conjugates containing the same patent. US 5804183. 1998.
  • Clark MA, inventor; Modified arginine deiminase patent. US 6183738. 2001.
  • Bowles TL, Bowles TL, Kim R, et al. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. Int J Cancer Suppl. 2008;123(8):1950–1955.
  • Delage B, Luong P, Maharaj L, et al. Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to arginine deiminase treatment, autophagy and caspase-dependent apoptosis. Cell Death Dis. 2012;3(7):e342.
  • Feun LG, Marini A, Walker G, et al. Negative argininosuccinate synthetase expression in melanoma tumours may predict clinical benefit from arginine-depleting therapy with pegylated arginine deiminase. Br J Cancer. 2012;106(9):1481–1485.
  • Huang CC, Huang -C-C, Tsai ST, et al. Arginine deprivation as a new treatment strategy for head and neck cancer. Oral Oncol. 2012;48(12):1227–1235.
  • Huang HY, Wu WR, Wang YH, et al. ASS1 as a novel tumor suppressor gene in myxofibrosarcomas: aberrant loss via epigenetic DNA methylation confers aggressive phenotypes, negative prognostic impact, and therapeutic relevance. Clin Cancer Res. 2013;19(11):2861–2872.
  • Kelly MP, Jungbluth AA, Wu BW, et al. Arginine deiminase PEG20 inhibits growth of small cell lung cancers lacking expression of argininosuccinate synthetase. Br J Cancer. 2011;106(2):324–332.
  • Syed N, Langer J, Janczar K, et al. Epigenetic status of argininosuccinate synthetase and argininosuccinate lyase modulates autophagy and cell death in glioblastoma. Cell Death Dis. 2013;4(1):e458.
  • Ensor CM, Holtsberg FW, Clark MA, inventors; Mutated form of arginine deiminase patent. US 6635462. 2003.
  • Huang Y, Qiu J, Fu X, et al., inventors; Arginine deiminase mutant and preparation and application thereof patent. US 8663967. 2014.
  • Wong BL, inventor; Albumin-binding arginine deminase and the use thereof patent. US 9255262. 2016.
  • Glazer ES, Piccirillo M, Albino V, et al. Phase II study of pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J Clinical Oncology. 2010 May 1;28(13):2220–2226.
  • Izzo F, Marra P, Beneduce G, et al. Pegylated arginine deiminase treatment of patients with unresectable hepatocellular carcinoma: results from phase I/II studies. J Clinical Oncology. 2004 May 15;22(10):1815–1822.
  • Yang TS, Lu SN, Chao Y, et al. A randomised phase II study of pegylated arginine deiminase (ADI-PEG 20) in Asian advanced hepatocellular carcinoma patients. Br J Cancer. 2010 Sep 28;103(7):954–960.
  • Ascierto PA, Scala S, Castello G, et al. Pegylated arginine deiminase treatment of patients with metastatic melanoma: results from phase I and II studies. J Clinical Oncology. 2005 Oct 20;23(30):7660–7668.
  • Ott PA, Carvajal RD, Pandit-Taskar N, et al. Phase I/II study of pegylated arginine deiminase (ADI-PEG 20) in patients with advanced melanoma. Invest New Drugs. 2013 Apr;31(2):425–434.
  • Akaike T, Noguchi Y, Ijiri S, et al. Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci USA. 1996;93(6):2448–2453.
  • Karupiah G, Chen JH, Mahalingam S, et al. Rapid interferon gamma-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide synthase 2-deficient mice. J Exp Med. 1998;188(8):1541–1546.
  • Lopez-Guerrero JA, Carrasco L. Effect of nitric oxide on poliovirus infection of two human cell lines. J Virol. 1998;72(3):2538–2540.
  • Sukwattanapan C, Ubol S, Ubol S, et al. Inducible nitric oxide synthase inhibition delays death of rabies virus-infected mice. J Med Microbiol. 2001;50(3):238–242.
  • Kreil TR, Eibl MM. Nitric oxide and viral infection: no antiviral activity against a flavivirus in vitro, and evidence for contribution to pathogenesis in experimental infection in vivo. Virology. 1996;219(1):304–306.
  • Clark MA, inventor Methods for inhibiting viral replication in vivo patent. US 7204980. 2007.
  • Gesto DS, Cerqueira NM, Fernandes PA, et al. Unraveling the enigmatic mechanism of L-asparaginase II with QM/QM calculations. J Am Chem Soc. 2013;135(19):7146–7158.
  • Covini D, Tardito S, Bussolati O, et al. Expanding targets for a metabolic therapy of cancer: L-asparaginase. Recent Pat Anticancer Drug Discov. 2012;7(1):4–13.
  • Roberts J, Bank WRIB, inventors; Method of purifying l-asparaginase patent US 3597323 A. 1971.
  • Ratych OT, Robison RS, Berk B, Inc SS, inventors; Synthesis of l-asparaginase patent US 3511755 A. 1970.
  • Spiers AS, Wade HE. Achromobacter L-glutaminase-L-asparaginase: human pharmacology, toxicology, and activity in acute leukemias. Cancer Treat Rep. 1979;63(6):1019–1024.
  • Sullivan MG. Asparaginase Erwinia chrysanthemi approved for acute lymphoblastic leukemia. Community Oncol. 2011;8(12):569–570.
  • Abribat T, inventor Pegylated l-asparaginase patent. EP 2451486 A1. 2011.
  • Moghrabi A, Levy DE, Asselin B, et al. Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95-01 for children with acute lymphoblastic leukemia. Blood. 2007 Feb 1;109(3):896–904.
  • Pieters R, Hunger SP, Boos J, et al. L-asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer. 2011 Jan 15;117(2):238–249.
  • Kwok CS, Kham SK, Ariffin H, et al. Minimal residual disease (MRD) measurement as a tool to compare the efficacy of chemotherapeutic drug regimens using Escherichia coli-asparaginase or Erwinia-asparaginase in childhood acute lymphoblastic leukemia (ALL). Pediatr Blood Cancer. 2006 Sep;47(3):299–304.
  • Allas S, Sahakian P, Fichtner I, et al. Pharmacokinetics and Pharmacodynamics in Mice of a Pegylated Recombinant Erwinia Chrysanthemi-Derived L-Asparaginase. Blood. 2009;114(22):2033–33.
  • Chien -W-W, Allas S, Rachinel N, et al. Pharmacology, immunogenicity, and efficacy of a novel pegylated recombinant Erwinia chrysanthemi-derived L-asparaginase. Invest New Drugs. 2014;32(5):795–805.
  • Samudio I, Konopleva M. Asparaginase unveils glutamine-addicted AML. Blood. 2013 Nov 14;122(20):3398–3400.
  • Derst C, Henseling J, Röhm KH. Engineering the substrate specificity of Escherichia coliasparaginase II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Protein Sci. 2000;9(10):2009–2017.
  • Li L-Z, Xie T-H, Li H-J, et al. Enhancing the thermostability of Escherichia coli l-asparaginase II by substitution with pro in predicted hydrogen-bonded turn structures. Enzyme Microb Technol. 2007;41(4):523–527.
  • Bansal S, Kundu B, Mishra P. Department of biotechnology MOST, Indian Institute Of Technology D, inventors. Mutants of I-Asparagine patent WO 2012028945 A3. 2012.
  • Gummadi C. Screening and isolation of novel glutaminase Free L-asparaginase from fungal endophytes. Research Journal of Microbiology. 2014;9(4):163–176.
  • Avramis VI, Cohen L, Aventis Pharmaceuticals Products I, inventors; Pharmaceutical compositions comprising peg-asparaginase for the treatment of hiv infections patent. WO 1999039732 A1. 1999.
  • Shen L-J, Shen W-C. Drug evaluation: ADI-PEG-20–a PEGylated arginine deiminase for arginine-auxotrophic cancers. Curr Opin Mol Ther. 2006;8(3):240–248.
  • Gong H, Zölzer F, von Recklinghausen G, et al. Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis. Leukemia. 2000;14(5):826–829.
  • Müller H. Use of ?-asparaginase in childhood ALL. Crit Rev Oncol Hematol. 1998;28(2):97–113.
  • Schellekens H. Immunogenicity of therapeutic proteins: clinical implications and future prospects. Clin Ther. 2002;24(11):1720–1740. discussion 19.
  • Cantor JR, Yoo TH, Dixit A, et al. Therapeutic enzyme deimmunization by combinatorial T-cell epitope removal using neutral drift. Proc Natl Acad Sci USA. 2011;108(4):1272–1277.
  • Sun X, Yang Z, Li S, et al. In vivo efficacy of recombinant methioninase is enhanced by the combination of polyethylene glycol conjugation and pyridoxal 5ʹ-phosphate supplementation. Cancer Res. 2003;63(23):8377–8383.
  • Miki K, Xu M, Gupta A, et al. Methioninase cancer gene therapy with selenomethionine as suicide prodrug substrate. Cancer Res. 2001;61(18):6805–6810.
  • Yang Z, Wang J, Yoshioka T, et al. Pharmacokinetics, methionine depletion, and antigenicity of recombinant methioninase in primates. Clin Cancer Res. 2004;10(6):2131–2138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.