624
Views
39
CrossRef citations to date
0
Altmetric
Review

Glycogen synthase kinase 3 (GSK-3) inhibitors: a patent update (2014-2015)

&
Pages 657-666 | Received 04 May 2016, Accepted 07 Nov 2016, Published online: 21 Nov 2016

References

  • Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Eur J Biochem. 1980;107:519–527.
  • The Croonian Lecture; Cohen P. Identification of a protein kinase cascade of major importance in insulin signal transduction. Philos Trans R Soc Lond B Biol Sci. 1998;1999(354):485–495.
  • Woodgett JR. Physiological roles of glycogen synthase kinase-3: potential as a therapeutic target for diabetes and other disorders. Endocr Metab Immune Disord Drug Targets. 2003;3:281–290.
  • Cohen P, Frame S. The renaissance of GSK3. Nat Rev Mol Cell Biol. 2001;2:769–776.
  • Ishiguro K, Takamatsu M, Tomizawa K, et al. Tau protein kinase I converts normal tau protein into A68-like component of paired helical filaments. J Biol Chem. 1992;267:10897–10901.
  • Arioka M, Tsukamoto M, Ishiguro K, et al. τ protein kinase II is involved in the regulation of the normal phosphorylation state of τ protein. J Neurochem. 1993;60:461–468.
  • Ishiguro K, Shiratsuchi A, Sato S, et al. Glycogen synthase kinase 3β is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett. 1993;325:167–172.
  • Uchida T, Ishiguro K, Ohnuma J, et al. Precursor of cdk5 activator, the 23 kDa subunit of tau protein kinase II: its sequence and developmental change in brain. FEBS Lett. 1994;355:35–40.
  • Hui-Chuan H, Peter SK. Multiple roles for glycogen synthase kinase-3 as a drug target in alzheimers disease. Curr Drug Targets. 2006;7:1389–1397.
  • Dorronsoro I, Castro A, Martinez A. Inhibitors of glycogen synthase kinase-3: future therapy for unmet medical needs? Expert Opin Ther Pat. 2002;12:1527–1536.
  • Kypta RM. GSK-3 inhibitors and their potential in the treatment of Alzheimer’s disease. Expert Opin Ther Pat. 2005;15:1315–1331.
  • Cohen P, Goedert M. GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov. 2004;3:479–487.
  • Arfeen M, Bharatam PV. Design of glycogen synthase kinase-3 inhibitors: an overview on recent advancements. Curr Pharm Des. 2013;19:4755–4775.
  • Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther. 2015;148:114–131.
  • Ojo KK, Arakaki TL, Napuli AJ, et al. Structure determination of glycogen synthase kinase-3 from leishmania major and comparative inhibitor structure–activity relationships with trypanosoma brucei GSK-3. Mol Biochem Parasitol. 2011;176:98–108.
  • Wang HH, Lamont RJ, Kumar A, et al. GSK3β and the control of infectious bacterial diseases. Trends Microbiol. 2014;22:208–217.
  • Masch A, Kunick C. Selective inhibitors of pLasmodium falciparum glycogen synthase-3 (PfGSK-3): new antimalarial agents? Biochim Biophys Acta. 2015;1854:1644–1649.
  • Sebastian V, Manoli MT, Perez DI, et al. New applications for known drugs: human glycogen synthase kinase 3 inhibitors as modulators of aspergillus fumigatus growth. Eur J Med Chem. 2016;116:281–289.
  • Swinney ZT, Haubrich BA, Xia S, et al. A four-point screening method for assessing molecular mechanism of action (MMOA) identifies tideglusib as a time-dependent inhibitor of trypanosoma brucei GSK3beta. PLoS Negl Trop Dis. 2016;10:e0004506.
  • Saeki K, Machida M, Kinoshita Y, et al. Glycogen synthase kinase-3β2 has lower phosphorylation activity to tau than glycogen synthase kinase-3β1. Biol Pharm Bull. 2011;34:146–149.
  • Gao C, Hölscher C, Liu Y, et al. GSK3: a key target for the development of novel treatments for type 2 diabetes mellitus and Alzheimer disease. Rev Neurosci. 2012;23:1.
  • McCubrey JA, Steelman LS, Bertrand FE, et al. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget. 2014;5:2881–2911.
  • Golpich M, Amini E, Hemmati F, et al. Glycogen synthase kinase-3 beta (GSK-3β) signaling: implications for Parkinson’s disease. Pharmacol Res. 2015;97:16–26.
  • Palomo V, Perez DI, Gil C, et al. The potential role of glycogen synthase kinase 3 inhibitors as amyotrophic lateral sclerosis pharmacological therapy. Curr Med Chem. 2011;18:3028–3034.
  • Costemale-Lacoste JF, Guilloux JP, Gaillard R. The role of GSK-3 in treatment-resistant depression and links with the pharmacological effects of lithium and ketamine: A review of the literature. L’Encephale. 2016;42:156–164.
  • Hooper C, Killick R, Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J Neurochem. 2008;104:1433–1439.
  • Muyllaert D, Kremer A, Jaworski T, et al. Glycogen synthase kinase-3β, or a link between amyloid and tau pathology? Genes Brain Behav. 2008;7:57–66.
  • Georgievska B, Sandin J, Doherty J, et al. AZD1080, a novel GSK3 inhibitor, rescues synaptic plasticity deficits in rodent brain and exhibits peripheral target engagement in humans. J Neurochem. 2013;125:446–456.
  • Martinez A, Alonso M, Castro A, et al. First non-atp competitive glycogen synthase kinase 3 β (GSK-3β) Inhibitors: Thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s Disease. J Med Chem. 2002;45:1292–1299.
  • Del Ser T, Steinwachs KC, Gertz HJ, et al. Treatment of alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. J Alzheimer’s Dis. 2013;33:205–215.
  • Tolosa E, Litvan I, Höglinger GU, et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord. 2014;29:470–478.
  • Höglinger GU, Huppertz H-J, Wagenpfeil S, et al. Tideglusib reduces progression of brain atrophy in progressive supranuclear palsy in a randomized trial. Mov Disord. 2014;29:479–487.
  • Lovestone S, Boada M, Dubois B, et al. A phase II trial of tideglusib in alzheimer’s disease. J Alzheimers Dis. 2015;45:75–88.
  • Anagnostou E. Tideglusib vs. Placebo in the treatment of adolescents with autism spectrum disorders. Clinical Trials.Gov. 2016 May 4; [cited https://clinicaltrials.gov/ct2/show/NCT02586935
  • Mines MA, Yuskaitis CJ, King MK, et al. GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism. Plos One. 2010;5:e9706; Epub 2010 Mar 20.
  • Gray JE, Infante JR, Brail LH, et al. A first-in-human phase I dose-escalation, pharmacokinetic, and pharmacodynamic evaluation of intravenous LY2090314, a glycogen synthase kinase 3 inhibitor, administered in combination with pemetrexed and carboplatin. Investig New Drugs. 2015;33:1187–1196.
  • Wu P, Nielsen TE, Clausen MH. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discov Today. 2016;21:5–10.
  • Atkinson JM, Rank KB, Zeng Y, et al. Activating the Wnt/β-Catenin pathway for the treatment of melanoma – application of LY2090314, a novel selective inhibitor of glycogen synthase kinase-3. Plos One. 2015;10:e0125028.
  • Rizzieri DA, Cooley S, Odenike O, et al. An open-label phase 2 study of glycogen synthase kinase-3 inhibitor LY2090314 in patients with acute leukemia. Leuk Lymphoma. 2016;6:1–7.
  • Avrahami L, Licht-Murava A, Eisenstein M, et al. GSK-3 inhibition: achieving moderate efficacy with high selectivity. Biochim Biophys Acta, Proteins Proteomics. 2013;1834:1410–1414.
  • Stamos JL, Weis WI. The beta-catenin destruction complex. Cold Spring Harbor perspectives in biology. 2013;5(1):a007898. doi: 10.1101/cshperspect.a007898.
  • Martinez A, Perez DI, Gil C. Lessons learnt from glycogen synthase kinase 3 inhibitors development for Alzheimer’s disease. Curr Top Med Chem. 2013;13:1808–1819.
  • Loscher W. Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs. 2002;16:669–694.
  • Jope RS, Roh M-S. Glycogen synthase kinase-3 (GSK3) in psychiatric diseases and therapeutic interventions. Curr Drug Targets. 2006;7:1421–1434.
  • Leng Y, Liang MH, Ren M, et al. Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition. J Neurosci. 2008;28:2576–2588.
  • Abbott FS, Acheampong AA. Quantitative structure-anticonvulsant activity relationships of valproic acid, related carboxylic acids and tetrazoles. Neuropharmacol. 1988;27:287–294.
  • Leclerc S, Garnier M, Hoessel R, et al. Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A Property Common to Most Cyclin-Dependent Kinase Inhibitors? J Biol Chem. 2001;276:251–260.
  • De Witte PE, Crawford C, Smolders A, et al. Anticonvulsant activity of GSK-3 beta inhibitors. WO2014053580. 2014.
  • Taylor A, Harker JA, Chanthong K, et al. Glycogen synthase kinase 3 inactivation drives T-bet-mediated downregulation of co-receptor PD-1 to enhance CD8(+) cytolytic T cell responses. Immunity. 2016;44:274–286.
  • Hill EV, Ng TH, Burton BR, et al. Glycogen synthase kinase-3 controls IL-10 expression in CD4(+) effector T-cell subsets through epigenetic modification of the IL-10 promoter. Eur J Immunol. 2015;45:1103–1115.
  • Rudd CL, Rothstein DC, Lee DM, et al. Use of GSK-3 inhibitors or activators which modulate pd-1 or t-bet expression to modulate t cell immunity. WO2015155738. 2016.
  • Wraith DH, Bristol U. Tolerisation- inducing composition. WO2013150284. 2013.
  • Jamieson S, Butzow R, Andersson N, et al. The FOXL2 C134W mutation is characteristic of adult granulosa cell tumors of the ovary. Mod Pathol. 2010;23:1477–1485.
  • Kim JH, Kim YH, Kim HM, et al. FOXL2 posttranslational modifications mediated by GSK3β determine the growth of granulosa cell tumours. Nat Commun. 2014;5:2936.
  • Bae JL, Kim KJ. Chung-Ang University. Pharmaceutical composition for preventing or treating ovary granulosa cell tumors containing glycogen synthase kinase-3 beta inhibitor as active ingredient, and functional health food composition. US20160058738. 2016.
  • Gross S, Rahal R, Stransky N, et al. Targeting cancer with kinase inhibitors. J Clin Invest. 2015;125:1780–1789.
  • Benoit YD, Guezguez B, Boyd AL, et al. Molecular pathways: epigenetic modulation of Wnt-glycogen synthase kinase-3 signaling to target human cancer stem cells. Clin Cancer Res. 2014;20:5372–5378.
  • Maher EA, Furnari FB, Bachoo RM, et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 2001;15:1311–1333.
  • Korur SB, Wymann F, Universitaet Basel M. Combination of lysosomotropic or autophagy modulating agents and a GSK-3 inhibitor for treatment of cancer. WO2013182519. 2013.
  • Takeda K, Yamaguchi N, Akiba H, et al. Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy. J Exp Med. 2004;199:437–448.
  • Kim H, Samuel SL, Zhai G, et al. Combination therapy with anti-DR5 antibody and tamoxifen for triple negative breast cancer. Cancer Biol Ther. 2014;15:1053–1060.
  • Kenichi WN, Shiho S, Daiichi Sankyo I Comp. Combination of GSK3 inhibitor and anti-DR5 antibody. WO2014050779. 2014.
  • Li W, Sun W, Zhang Y, et al. Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc Natl Acad Sci U S A. 2011;108:8299–8304.
  • Hui J, Zhang J, Kim H, et al. Fluoxetine regulates neurogenesis in vitro through modulation of GSK-3β/β-catenin signaling. Int J Neuropsychopharmacol. 2014;18(5). pii: pyu099. doi: 10.1093/ijnp/pyu099.
  • Guo W, Murthy AC, Zhang L, et al. Inhibition of GSK3beta improves hippocampus-dependent learning and rescues neurogenesis in a mouse model of fragile X syndrome. Hum Mol Genet. 2012;21:681–691; Epub 2011 Nov 04.
  • Bone HT, David T, Welham MJ; Stem Cells for Safer Medicines. Composition and method for differentiation of human embryonic stem cells. WO2011064549. 2011.
  • Brolen GE, Cellartis J Ab. Directed differentiation and maturation of pluripotent cells into hepatocyte like cells by modulation of wnt-signalling pathway. WO2011116930. 2011.
  • Kuppers-Munther BE, Cellectis J. Maturation of hepatocyte-like cells derived from human pluripotent stem cells. WO2014083132. 2014.
  • Lian X, Hsiao C, Wilson G, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A. 2012;109:E1848–E57.
  • Palecek SK, Lian T; Wisconsin Alumni Research Found. Generation of cardiomyocytes from human pluripotent stem cells. US2015152389. 2015.
  • Lian X, Zhang J, Azarin SM, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc. 2013;8:162–175.
  • Cheng L, Hu W, Qiu B, et al. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res. 2014;24:665–679.
  • Pei GZ, Cheng J, Hu L, et al.; Shanghai Institutes For Biological Sciences, Chinese Academy Of Sciences. Treatment of neurological conditions. WO2015131788. 2015.
  • Cheng L, Gao L, Guan W, et al. Direct conversion of astrocytes into neuronal cells by drug cocktail. Cell Res. 2015;25:1269–1272.
  • Hu W, Qiu B, Guan W, et al. Direct conversion of normal and alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell. 2015;17:204–212.
  • Bouskila M, Hirshman MF, Jensen J, et al. Insulin promotes glycogen synthesis in the absence of GSK3 phosphorylation in skeletal muscle. Am J Physiol Endocrinol Metab. 2008;294:E28–E35.
  • Martinez A, Gil C, Perez DI. Glycogen synthase kinase 3 inhibitors in the next horizon for Alzheimer’s disease treatment. Int J Alzheimers Dis. 2011;2011:280502.
  • Dominguez JM, Fuertes A, Orozco L, et al. Evidence for irreversible inhibition of glycogen synthase kinase-3beta by tideglusib. J Biol Chem. 2012;287:893–904.
  • Martinez AM,M, Alonso M, Fuertes A, et al. GSK-3 inhibitors. US08686042. 2014.
  • Turner SB, Bakker MHM, Stewart KD; Abbvie Inc. Heterocyclic compounds and their use as glycogen synthase kinase 3 inhibitors. US 8642598. 2014.
  • Medina MD, De Cristobal JM, Fuertes J, et al. NOSCIRA. Thiadiazolidinediones as GSK-3 inhibitors. US9469618 (B2). 2016.
  • Licht-Murava A, Plotkin B, Eisenstein M, et al. Elucidating substrate and inhibitor binding sites on the surface of GSK-3beta and the refinement of a competitive inhibitor. J Mol Biol. 2011;408:366–378.
  • Licht-Murava A, Eldar-Finkelman H. Exploiting substrate recognition for selective inhibition of protein kinases. Curr Pharm Des. 2012;18:2914–2920.
  • Palomo V, Perez DI, Perez C, et al. 5-imino-1,2,4-thiadiazoles: first small molecules as substrate competitive inhibitors of glycogen synthase kinase 3. J Med Chem. 2012;55:1645–1661.
  • Eldar-Finkelman HL-M, Plotkin A, Ramot at Tel-Aviv U. Glycogen synthase kinase-3 inhibitors. US20130310303. 2013.
  • Eldar-Finkelman HE, Ramot at Tel-Aviv U. Glycogen synthase kinase-3 inhibitors. WO2012101601. 2013.
  • Kaidanovich-Beilin O, Eldar-Finkelman H. Long-term treatment with novel glycogen synthase kinase-3 inhibitor improves glucose homeostasis in ob/ob mice: molecular characterization in liver and muscle. J Pharmacol Exp Ther. 2006;316:17–24.
  • Shapira M, Licht A, Milman A, et al. Role of glycogen synthase kinase-3beta in early depressive behavior induced by mild traumatic brain injury. Mol Cell Neurosci. 2007;34:571–577.
  • Palomo V, Soteras I, Perez DI, et al. Exploring the binding sites of glycogen synthase kinase 3. Identification and characterization of allosteric modulation cavities. J Med Chem. 2011;54:8461–8470.
  • Martínez AG, Palomo C, Perez V, et al. Superior de Investigaciones Científicas (CSIC). Heterocyclic GSK-3 allosteric modulators. EP2769720. 2014.
  • Franklin AV, King MK, Palomo V, et al. Glycogen synthase kinase-3 inhibitors reverse deficits in long-term potentiation and cognition in fragile X mice. Biol Psychiatry. 2014;75:198–206.
  • Beurel E, Kaidanovich-Beilin O, Yeh WI, et al. Regulation of Th1 cells and experimental autoimmune encephalomyelitis by glycogen synthase kinase-3. J Immunol. 2013;190:5000–5011.
  • Cociorva OF, Kohno Y, Li Y, et al., Kyorin Pharmaceuticals Co., Ltd. Spirocyclic aminoquinolones as GSK-3 inhibitors. US20140005184. 2014.
  • Seto S, Yumoto K, Okada K, et al. Quinolone derivatives containing strained spirocycle as orally active glycogen synthase kinase 3beta (GSK-3beta) inhibitors for type 2 diabetics. Bioorg Med Chem. 2012;20:1188–1200.
  • Kiyoshi NY,T, Noriyasu H, Hiroyuki N, et al.; Daiichi Sankyo Comp. Tricyclic compounds. WO2014003098. 2014.
  • Schmidt BLM, Eldar-Finkelmann F, Van Leuven H, et al.; Technische Universität Darmstadt. Derivate von 2-benzylsulfanyl[1,3,4]-oxadiazol und deren medizinische verwendung. WO2013007663. 2013.
  • Lo Monte F, Kramer T, Gu J, et al. Structure-based optimization of oxadiazole-based GSK-3 inhibitors. Eur J Med Chem. 2013;61:26–40; Epub 2012 Jul 04.
  • Neumann T, Benajiba L, Goring S, et al. Evaluation of improved glycogen synthase kinase-3alpha inhibitors in models of acute myeloid leukemia. J Med Chem. 2015;58:8907–8919.
  • Tan JS, Rezai-Zadeh D; University of South Florida. Flavonoid treatment of glycogen synthase kinase-based disease. US8802638. 2014.
  • Rezai-Zadeh K, Douglas Shytle R, Bai Y, et al. Flavonoid-mediated presenilin-1 phosphorylation reduces Alzheimer’s disease beta-amyloid production. J Cell Mol Med. 2009;13:574–588.
  • Johnson JL, Rupasinghe SG, Stefani F, et al. Citrus flavonoids luteolin, apigenin, and quercetin inhibit glycogen synthase kinase-3β enzymatic activity by lowering the interaction energy within the binding cavity. J Med Food. 2011;14:325–333.
  • Sawmiller D, Li S, Shahaduzzaman M, et al. Luteolin reduces Alzheimer’s disease pathologies induced by traumatic brain injury. Int J Mol Sci. 2014;15:895–904.
  • Glaser J, Holzgrabe U. Focus on PAINS: false friends in the quest for selective anti-protozoal lead structures from Nature? MedChemComm. 2016;7:214–223.
  • Luo GC, Dubowchik L, Jacutin-Porte GM, et al., Bristol Myers Co. GSK-3 Inhibitors. WO2015069594. 2015.
  • Luo G, Chen L, Burton CR, et al. Discovery of isonicotinamides as highly selective, brain penetrable, and orally active glycogen synthase kinase-3 inhibitors. J Med Chem. 2016;59:1041–1051.
  • O’Leary O, Nolan Y. Glycogen synthase kinase-3 as a therapeutic target for cognitive dysfunction in neuropsychiatric disorders. CNS Drugs. 2015;29:1–15.
  • Alis IMC, Dragone N, Furlotti P, et al.; Aziende Chimiche Riunite Ltd. 1H-Indazole-3-carboxamide compounds as glycogen synthase kinase 3 beta inhibitors. US20150057294. 2015.
  • Furlotti G, Alisi MA, Cazzolla N, et al. Hit optimization of 5-substituted-N-(piperidin-4-ylmethyl)-1H-indazole-3-carboxamides: potent glycogen synthase kinase-3 (GSK-3) inhibitors with in vivo activity in model of mood disorders. J Med Chem. 2015;58:8920–8937.
  • Wagner FF, Bishop JA, Gale JP, et al. Inhibitors of glycogen synthase kinase 3 with exquisite kinome-wide selectivity and their functional effects. ACS Chem Biol. 2016;11:1952–1963; Epub 2016 Apr 30.
  • Wagner FP, Dandapani JQ, Germain S, et al.; The Broad Institute Inc. GSK3 inhibitors and methods of use thereof. WO2014059383. 2014.
  • Berdini VC, Gill MG, Howard AL, et al.; Astex Therapeutics, Ltd. Pyrazole compounds that modulate the activity of CDK, GSK and aurora kinases. US8778936. 2014.
  • Akritopoulou-Zanze I, Wakefield BD, Gasiecki A, et al. Scaffold oriented synthesis. Part 4: design, synthesis and biological evaluation of novel 5-substituted indazoles as potent and selective kinase inhibitors employing heterocycle forming and multicomponent reactions. Bioorg Med Chem Lett. 2011;21:1480–1483.
  • Akritopoulou-Zanze IW, Mack H, Turner SC, et al.; Abbvie Inc. 5-substituted indazoles as kinase inhibitors. US8648069. 2014.
  • Tsutsumi TS, Koga S, Matsumoto M, et al. Pyrrolopyrimidine thion derivatives. US2005153992. 2005.
  • Green JG, Pierce R; Vertex Pharmaceuticals Inc. Compositions useful as inhibitors of protein kinases. US8653088. 2014.
  • Bebbington DC, Golec JD, Pierard J; Vertex Pharmaceuticals Inc. Pyrazole compounds useful as protein kinase inhibitors. US8697698. 2014.
  • Charrier JL, Knegtel P, Golec R, et al., Vertex Pharmaceuticals Inc. Triazole compounds useful as protein kinase inhibitors. US08633210. 2014.
  • Turner SM, Bakker H, Van Gaalen MH, et al., Abbott Gmbh & Co. Heterocyclic compounds and their use as glycogen synthase kinase-3 inhibitors. US2012172376. 2012.
  • Turner SB, Van Gaalen MH, Wolter M, et al., Abbott Gmbh & Co. Heterocyclic compounds and their use as glycogen synthase kinase-3 inhibitors. US2012077840. 2012.
  • Tejeda-Muñoz N, Robles-Flores M. Glycogen synthase kinase-3 in Wnt signaling and cancer. Iubmb. 2015;67:914–922.
  • Sah DWY, Hinkle G.; Alnylam Pharmaceuticals Inc. Compositions and methods for inhibiting expression of GSK-3 genes. US09029525. 2015.
  • Reed TD, Atzel AH; Intrexon Corp. GSK3 ligands and polynucleotides encoding GSK3 ligands. US20140273227. 2014.
  • Di Martino RM, De Simone A, Andrisano V, et al. Versatility of the curcumin scaffold: discovery of potent and balanced dual BACE-1 and GSK-3beta inhibitors. J Med Chem. 2016;59:531–544.
  • Prati F, De Simone A, Armirotti A, et al. 3,4-Dihydro-1,3,5-triazin-2(1H)-ones as the first dual BACE-1/GSK-3beta fragment hits against Alzheimer’s Disease. ACS Chem Neurosci. 2015;6:1665–1682.
  • Prati F, De Simone A, Bisignano P, et al. Multitarget drug discovery for Alzheimer’s disease: triazinones as BACE-1 and GSK-3beta inhibitors. Angew Chem Int Ed Engl. 2015;54:1578–1582.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.