523
Views
18
CrossRef citations to date
0
Altmetric
Review

PARP inhibitors as antitumor agents: a patent update (2013-2015)

, , , , , & show all
Pages 363-382 | Received 21 Apr 2016, Accepted 28 Oct 2016, Published online: 21 Nov 2016

References

  • Papeo G, Casale E, Montagnoli A, et al. PARP inhibitors in cancer therapy: an update. Expert Opin Ther Pat. 2013;23(4):503–514.
  • Curtin NJ, Szabo C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Aspects Med. 2013;34(6):1217–1256.
  • Sonnenblick A, de Azambuja E, Azim HA, et al. An update on PARP inhibitors—moving to the adjuvant setting. Nat Rev Clin Oncol. 2014;12(1):27–41.
  • Ryu KW, Kim D-S, Kraus WL. New facets in the regulation of gene expression by adp-ribosylation and poly(adp-ribose) polymerases. Chem Rev. 2015;115(6):2453–2481.
  • Huang S-MA, Mishina YM, Liu S, et al. Tankyrase inhibition stabilizes axin and antagonizes WNT signalling. Nature. 2009;461(7264):614–620.
  • Peukert S, Schwahn U. New inhibitors of poly (adp-ribose) polymerase (PARP). Expert Opin Ther Pat. 2004;14(11):1531–1551.
  • Jagtap P, Szabó C. Poly(adp-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov. 2005;4(5):421–440.
  • Ferraris DV. Evolution of poly(adp-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J Med Chem. 2010;53(12):4561–4584.
  • McLornan DP, List A, Mufti GJ. Applying synthetic lethality for the selective targeting of cancer. N Engl J Med. 2014;371(18):1725–1735.
  • Lord CJ, Tutt ANJ, Ashworth A. Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu Rev Med. 2015;66 Caskey CT (Ed). 455–470.
  • Walsh CS. Two decades beyond BRCA1/2: homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy. Gynecol Oncol. 2015;137(2):343–350.
  • Postel-Vinay S, Bajrami I, Friboulet L, et al. A high-throughput screen identifies PARP-1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer. Oncogene. 2013;32(47):5377–5387.
  • Somyajit K, Mishra A, Jameei A, et al. Enhanced non-homologous end joining contributes toward synthetic lethality of pathological rad51c mutants with poly (adp-ribose) polymerase. Carcinogenesis. 2015;36(1):13–24.
  • Bridges KA, Toniatti C, Buser CA, et al. Niraparib (MK-4827), a novel poly(adp-ribose) polymerase inhibitor, radiosensitizes human lung and breast cancer cells. Oncotarget. 2014;5(13):5076–5086.
  • Gani C, Coackley C, Kumareswaran R, et al. In vivo studies of the PARP inhibitor, AZD-2281, in combination with fractionated radiotherapy: an exploration of the therapeutic ratio. Radiother Oncol. 2015;116(3):486–494.
  • Engert F, Schneider C, Weibeta LM, et al. PARP inhibitors sensitize ewing sarcoma cells to temozolomide-induced apoptosis via the mitochondrial pathway. Mol Cancer Ther. 2015;14(12):2818–2830.
  • Karginova O, Siegel MB, Van Swearingen AED, et al. Efficacy of carboplatin alone and in combination with ABT888 in intracranial murine models of BRCA-mutated and BRCA-wild-type triple-negative breast cancer. Mol Cancer Ther. 2015;14(4):920–930.
  • Wulf GM, Juvekar A, Lyssiotis CA, et al. Combination of a PI3K and a PARP inhibitor to treat high-grade serous ovarian or triple-negative breast cancer. Cancer Res. 2014;74(19):CT338–CT338.
  • Sui H, Shi C, Yan Z, et al. Combination of erlotinib and a PARP inhibitor inhibits growth of A2780 tumor xenografts due to increased autophagy. Drug Des Dev Ther. 2015;9:3183–3190.
  • Konstantinopoulos PA, Wilson AJ, Saskowski J, et al. Suberoylanilide hydroxamic acid (SAHA) enhances olaparib activity by targeting homologous recombination DNA repair in ovarian cancer. Gynecol Oncol. 2014;133(3):599–606.
  • Pulliam N, Taverna P, Lyons J, et al. Novel combination therapy of DNMT inhibitor SGI-110 and PARP inhibitor BMN-673 (talazoparib) for BRCA-proficient ovarian cancer. Cancer Res. 2015;75(15):2943–2943.
  • Kumar R, Li DQ, Muller S, et al. Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene. 2016;35(34):4423-4436.
  • Papeo G, Forte B, Orsini P, et al. Poly (adp-ribose) polymerase inhibition in cancer therapy: are we close to maturity? Expert Opin Ther Pat. 2009;19(10):1377–1400.
  • Angion Biomedica Corp. Small molecule inhibitors of PARP activity. US2013303567. 2013.
  • Nerviano Medical Sciences S.r.l. 4-Carboxamido-isoindolinone derivatives as selective PARP-1 inhibitors. WO2014064149. 2014.
  • Nerviano Medical Sciences S.r.l. 3-Oxo-2,3-dihydro-1H-indazole-4-carboxamide derivatives as PARP-1 inhibitors. US2014235675. 2014.
  • Medshine Discovery Inc. 4H-pyrazolo[1,5-[alpha]]benzimidazole compound analogue as PARP inhibitor. CN104974161. 2015.
  • Sigma-Tau Ind Farmaceuti. 7-Azaindole derivatives as PARP inhibitors. WO2015011008. 2015.
  • Cincinelli R, Musso L, Merlini L, et al. 7-azaindole-1-carboxamides as a new class of PARP-1 inhibitors. Bioorg Med Chem. 2014;22(3):1089–1103.
  • Impact Therapeutics Inc. 1-(Arylmethyl)quinazoline-2,4(1H,3H)-diones as PARP inhibitors and the use thereof. US2014023642. 2014.
  • Janssen Pharmaceutica NV Quinazolinedione derivatives as PARP inhibitors. US2014100239. 2014.
  • Janssen Pharmaceutica NV Phthalazine derivatives as PARP inhibitors. US2015072972. 2015.
  • Chengdu Di`ao Pharmaceutical Group Co. Poly (adp-ribose) polymerase inhibitor. WO2013078771. 2013.
  • Shanghai Institute of Materia Medica. Piperazinotriazole compound, preparation method therefor, and use thereof in drug preparation. US2015166544. 2015.
  • Nerviano Medical Sciences S.r.l. 3-phenyl-isoquinolin-1(2h)-one derivatives as PARP-1 inhibitors. WO2013076090. 2013
  • Lupin Ltd. Tetrahydroquinazolinone derivatives as PARP inhibitors. WO2014009872. 2014.
  • BioMarin Phamaceutical Inc. Methods of using dihydropyridophthalazinone inhibitors of poly (adp-ribose)polymerase (PARP). WO2011130661. 2011.
  • BioMarin Phamaceutical Inc. Dihydropyridophthalazinone inhibitors of poly (adp-ribose) polymerase (PARP) for the treatment of multiple myeloma. WO2013028495. 2013.
  • Bing W, Daniel C. Dihydropyridophthalazinone inhibitors of poly(adp-ribose)polymerase (PARP). US2013053365. 2013.
  • Janssen Pharmaceutica NV Tetrahydrophenanthridinones and tetrahydrocyclopentaquinolinones as PARP and tubulin polymerization inhibitors. US2015353526. 2015.
  • BeiGene Ltd. Fused tetra or penta-cyclic pyridophthalazinones as PARP inhibitors. TW201444839. 2014.
  • BeiGene Ltd. Fused tetra or penta-cyclic dihydrodiazepinocarbazolones as PARP inhibitors. TW201444842. 2014.
  • Suzhou Kangrun Pharmaceutical Inc. Aza-phenalene-3-ketone derivative, preparation method thereof and application of aza-phenalene-3-ketone derivative as PARP inhibitor. CN104945406. 2015.
  • China Pharmaceutical University. Tricyclic indole compound (I) with PARP (Poly-ADP-Ribose Polymerase) inhibiting activity, preparation method and application thereof. CN103772395. 2014.
  • Santen Pharmaceutical Co. Novel compound having PARP inhibitory activity. US2014243320. 2014.
  • Abbvie Inc. Combination therapy with PARP inhibitors. US2015005355. 2015.
  • Abbvie Inc. Combination therapy with PARP inhibitors. US2015005354. 2015.
  • Abbvie Inc. Combination therapy with PARP inhibitors. US2013225647. 2013.
  • Nektar Therapeutics. Combination-based treatment method. WO2015108876. 2015.
  • Beth Isarel Hospiral. Compositions and methods for the treatment of proliferative diseases. WO2013049581. 2013.
  • Univ. Jefferson. Use of PARP inhibitors to treat breast cancer. WO2014052550. 2014.
  • Univ. Johns Hopkins. Therapy regimen and methods to sensitize cancer cells treated with epigenetic therapy to PARP inhibitors in multiple cancers. WO2015112598. 2015.
  • Oncozyme Pharma Inc. Combinations comprising diamidine compounds and PARP inhibitors for use INu treating cancer. WO2014008592. 2014.
  • Eisai R&D Man Co. Ltd. Use of eribulin and poly (adp ribose) polymerase (PARP) inhibitors as combination therapy for the treatment of cancer. WO2015184145. 2015
  • Gen Hospital Corp. Methods and assays for determining reduced brca1 pathway function in a cancer cell. WO2015100257. 2015
  • Univ. California. Biomarkers for prediction of response to PARP inhibition in breast cancer. WO2013133876. 2013.
  • Univ. Texas. gene signature to predict homologous recombination (hr) deficient cancer. WO2014138101. 2014.
  • Inst. Nat. Sante. Rech. Med. Methods for screening a brca1 loss-of-function in a subject suffering from a cancer. WO2013076295. 2013
  • Inst. Curie. Methods for detecting inactivation of the homologous recombination pathway (brca1/2) in human tumors. WO2013182645. 2013
  • Genomic Vision. Methods for the detection, visualization and high resolution physical mapping of genomic rearrangements in breast and ovarian cancer genes and loci brca1 and brca2 using genomic morse code in conjunction with molecular combing. WO2013064895. 2013.
  • Univ. Sheffield. Use of RNAi inhibiting PARP activity for the manufacture of a medicament for the treatment of cancer. US2015005327. 2015
  • Myriad Genetics Inc. Methods and materials for assessing loss of heterozygosity. WO2013096843. 2013.
  • Clovis Oncology Inc. Use of PARP inhibitors to treat breast or ovarian cancer patients showing a loss of heterozygosity. WO2015108986. 2015.
  • King S College London. Biomarkers correlated to PARP inhibitor treatment success in AML patients. WO2015040378. 2015
  • Univ. California. Biomarkers of response to inhibition of poly-adp ribose polymerase (PARP) in cancer. WO2014205105. 2014
  • Inst. Cancer Res. D B A the Res. INST Of Fox Chase Cancer CT. Methods for determining PARP inhibitor and platinum resistance in cancer therapy. US2015344968. 2015.
  • Sobol Jr Robert W. N-Methylpurine dna glycosylase and polymerase beta as biomarkers for alkylator chemotherapy potentiation. US2013316349. 2013
  • Univ. Emory. Selective chemotherapy treatments and diagnostic methods related thereto. WO2015168544. 2015.
  • Mayo Foundation. Methods and materials for assessing responsiveness to PARP inhibitors and platinating agents. US2013224312. 2013
  • Toshimitsu H, Yoshimoto Y, Augustine CK, et al. Inhibition of poly(adp-ribose) polymerase enhances the effect of chemotherapy in an animal model of regional therapy for the treatment of advanced extremity malignant melanoma. Ann Surg Oncol. 2010;17(8):2247–2254.
  • Penning TD, Zhu G-D, Gandhi VB, et al. Discovery of the poly (adp-ribose) polymerase (PARP) inhibitor 2-[(r)-2-methylpyrrolidin-2-yl]-1h-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J Med Chem. 2008;52(2):514–523.
  • Lin F, de Gooijer MC, Roig EM, et al. ABCB1, ABCG2, and PTEN determine the response of glioblastoma to temozolomide and ABT-888 therapy. Clin Cancer Res. 2014;20(10):2703–2713.
  • Mariano G, Ricciardi MR, Trisciuoglio D, et al. PARP inhibitor ABT-888 affects response of MDA-MB-231 cells to doxorubicin treatment, targeting snail expression. Oncotarget. 2015;6(17):15008–15021.
  • Reiss KA, Herman JM, Zahurak M, et al. A phase I study of veliparib (ABT-888) in combination with low-dose fractionated whole abdominal radiation therapy in patients with advanced solid malignancies and peritoneal carcinomatosis. Clin Cancer Res. 2015;21(1):68–76.
  • Coleman RL, Sill MW, Bell-McGuinn K, et al. A phase II evaluation of the potent, highly selective PARP inhibitor veliparib in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer in patients who carry a germline BRCA1 or BRCA2 mutation - an nrg oncology/gynecologic oncology group study. Gynecol Oncol. 2015;137(3):386–391.
  • Kummar S, Oza AM, Fleming GF, et al. Randomized trial of oral cyclophosphamide and veliparib in high-grade serous ovarian, primary peritoneal, or fallopian tube cancers, or BRCA-mutant ovarian cancer. Clin Cancer Res. 2015;21(7):1574–1582.
  • Middleton MR, Friedlander P, Hamid O, et al. Randomized phase II study evaluating veliparib (ABT-888) with temozolomide in patients with metastatic melanoma. Ann Oncol. 2015;26(10):2173–2179.
  • Gabrielson A, Tesfaye AA, Marshall JL, et al. Phase II study of temozolomide and veliparib combination therapy for sorafenib-refractory advanced hepatocellular carcinoma. Cancer Chemoth Pharm. 2015;76(5):1073–1079.
  • Jones P, Altamura S, Boueres J, et al. Discovery of 2-{4-[(3s)-piperidin-3-yl]phenyl}-2h-indazole-7-carboxamide (MK-4827): a novel oral poly(adp-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and −2 mutant tumors. J Med Chem. 2009;52(22):7170–7185.
  • Chung CK, Bulger PG, Kosjek B, et al. Process development of C-N cross-coupling and enantioselective biocatalytic reactions for the asymmetric synthesis of niraparib. Org Process Res Dev. 2014;18(1):215–227.
  • Murai J, Huang S-Y, Das BB, et al. Trapping of PARP-1 and PARP-2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–5599.
  • Genther Williams SM, Kuznicki AM, Andrade P, et al. Treatment with the PARP inhibitor, niraparib, sensitizes colorectal cancer cell lines to irinotecan regardless of msi/mss status. Cancer Cell Int. 2015;15(1):14–14.
  • Sandhu SK, Schelman WR, Wilding G, et al. The poly(adp-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase I dose-escalation trial. Lancet Oncol. 2013;14(9):882–892.
  • Abdullah I, Chee CF, Lee Y-K, et al. Benzimidazole derivatives as potential dual inhibitors for PARP-1 and dhodh. Bio Med Chem. 2015;23(15):4669–4680.
  • Zhu Q, Wang X, Hu Y, et al. Discovery and sar study of 2-(1-propylpiperidin-4-yl)-3h-imidazo 4,5-c pyridine-7-carboxamide: a potent inhibitor of poly(adp-ribose) polymerase-1 (PARP-1) for the treatment of cancer. Bio Med Chem. 2015;23(20):6551–6559.
  • Zhu Q, Wang X, Chu Z, et al. Design, synthesis and biological evaluation of novel imidazo 4,5-c pyridinecarboxamide derivatives as PARP-1 inhibitors. Bio Med Chem Lett. 2013;23(7):1993–1996.
  • Papeo G, Posteri H, Borghi D, et al. Discovery of 2-[1-(4,4-difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1h-isoindole-4-carboxamide (NMS-P118): a potent, orally available, and highly selective PARP-1 inhibitor for cancer therapy. J Med Chem. 2015;58(17):6875–6898.
  • Patel MR, Bhatt A, Steffen JD, et al. Discovery and structure–activity relationship of novel 2,3-dihydrobenzofuran-7-carboxamide and 2,3-dihydrobenzofuran-3(2h)-one-7-carboxamide derivatives as poly(adp-ribose)polymerase-1 inhibitors. J Med Chem. 2014;57(13):5579–5601.
  • Langelier MF, Planck JL, Roy S, et al. Structural basis for DNA damage-dependent poly(adp-ribosyl)ation by human parp-1. Science. 2012;336(6082):728–732.
  • Menear KA, Adcock C, Boulter R, et al. 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2h-phthalazin-1-one: a novel bioavailable inhibitor of poly(adp-ribose) polymerase-1. J Med Chem. 2008;51(20):6581–6591.
  • Liu JF, Tolaney SM, Birrer M, et al. A phase I trial of the poly(adp-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer. Eur J Cancer. 2013;49(14):2972–2978.
  • Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase II trial. Lancet Oncol. 2014;15(8):852–861.
  • Bixel K, Hays JL. Olaparib in the management of ovarian cancer. Pharmgenomics Pers Med. 2015;8:127–135.
  • Del Conte G, Sessa C, von Moos R, et al. Phase I study of olaparib in combination with liposomal doxorubicin in patients with advanced solid tumours. Brit J Cancer. 2014;111(4):651–659.
  • Kaufman B, Shapira-Frommer R, Schmutzler RK, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244–U134.
  • Jaspers JE, Kersbergen A, Boon U, et al. Loss of 53bp1 causes PARP inhibitor resistance in BRCA1-mutated mouse mammary tumors. Cancer Discov. 2013;3(1):68–81.
  • Williams R. Discontinued drugs in 2011: oncology drugs. Expert Opin Inv Drug. 2013;22(1):9–34.
  • Shanghai Hengrui Pharm Co. Ltd. Phthalazinone ketone derivative, preparation method thereof, and pharmaceutical use thereof. WO2012019427. 2012
  • Maciag AE, Holland RJ, Kim Y, et al. Nitric oxide (NO) releasing poly adp-ribose polymerase 1 (PARP-1) inhibitors targeted to glutathione s-transferase p1-overexpressing cancer cells. J Med Chem. 2014;57(6):2292–2302.
  • Zmuda F, Malviya G, Blair A, et al. Synthesis and evaluation of a radioiodinated tracer with specificity for poly(adp-ribose) polymerase-1 (PARP-1) in vivo. J Med Chem. 2015;58(21):8683–8693.
  • Johannes JW, Almeida L, Daly K, et al. Discovery of AZ0108, an orally bioavailable phthalazinone PARP inhibitor that blocks centrosome clustering. Bioorg Med Chem Lett. 2015;25(24):5743–5747.
  • Ye N, Chen C-H, Chen T, et al. Design, synthesis, and biological evaluation of a series of benzo[de][1,7]naphthyridin-7(8h)-ones bearing a functionalized longer chain appendage as novel PARP-1 inhibitors. J Med Chem. 2013;56(7):2885–2903.
  • Yao H, Ji M, Zhu Z, et al. Discovery of 1-substituted benzyl-quinazoline-2,4(1h,3h)-dione derivatives as novel poly(adp-ribose)polymerase-1 inhibitors. Bioorg Med Chem. 2015;23(4):681–693.
  • Wang L-X, Zhou X-B, M-L X, et al. Synthesis and biological evaluation of substituted 4-(thiophen-2-ylmethyl)-2h-phthalazin-1-ones as potent PARP-1 inhibitors. Bioorg Med Chem Lett. 2014;24(16):3739–3743.
  • Hannigan K, Kulkarni SS, Bdzhola VG, et al. Identification of novel PARP-1 inhibitors by structure-based virtual screening. Bioorg Med Chem Lett. 2013;23(21):5790–5794.
  • Tuong Vy Thi L, Suh JH, Kim N, et al. In silico identification of poly(adp-ribose)polymerase-1 inhibitors and their chemosensitizing effects against cisplatin-resistant human gastric cancer cells. Bioorg Med Chem Lett. 2013;23(9):2642–2646.
  • Giannini G, Battistuzzi G, Vesci L, et al. Novel PARP-1 inhibitors based on a 2-propanoyl-3h-quinazolin-4-one scaffold. Bioorg Med Chem Lett. 2014;24(2):462–466.
  • Gillmore AT, Badland M, Crook CL, et al. Multkilogram scale-up of a reductive alkylation route to a novel PARP inhibitor. Org Process Res Dev. 2012;16(12):1897–1904.
  • Liu JF, Konstantinopoulos PA, Matulonis UA. PARP inhibitors in ovarian cancer: current status and future promise. Gynecol Oncol. 2014;133(2):362–369.
  • Plummer R, Lorigan P, Steven N, et al. A phase II study of the potent PARP inhibitor, rucaparib (PF-01367338, AG014699), with temozolomide in patients with metastatic melanoma demonstrating evidence of chemopotentiation. Cancer Chemoth Pharm. 2013;71(5):1191–1199.
  • Falzacappa MVV, Ronchini C, Faretta M, et al. The combination of the PARP inhibitor rucaparib and 5-FU is an effective strategy for treating acute leukemias. Mol Cancer Ther. 2015;14(4):889–898.
  • Znojek P, Willmore E, Curtin NJ. Preferential potentiation of topoisomerase I poison cytotoxicity by PARP inhibition in S phase. Brit J Cancer. 2014;111(7):1319–1326.
  • Murray J, Thomas H, Berry P, et al. Tumour cell retention of rucaparib, sustained PARP inhibition and efficacy of weekly as well as daily schedules. Brit J Cancer. 2014;110(8):1977–1984.
  • Durmus S, Sparidans RW, van Esch A, et al. Breast cancer resistance protein (BCRP/ABCG2) and p-glycoprotein (P-gp/ABCB1) restrict oral availability and brain accumulation of the PARP inhibitor rucaparib (AG-014699). Pharmaceut Res. 2015;32(1):37–46.
  • Wang B, Chu D, Feng Y, et al. Discovery and characterization of (8s,9r)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1h-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3h-pyrido 4,3,2-de phthalazin-3-one (BMN673, talazoparib), a novel, highly potent, and orally efficacious poly(adp-ribose) polymerase-1/2 inhibitor, as an anticancer agent. J Med Chem. 2016;59(1):335–357.
  • Murai J, Huang S-YN, Renaud A, et al. Stereospecific PARP trapping by BMN673 and comparison with olaparib and rucaparib. Mol Cancer Ther. 2014;13(2):433–443.
  • Aoyagi-Scharber M, Gardberg AS, Yip BK, et al. Structural basis for the inhibition of poly(adp-ribose) polymerases 1 and 2 by BMN673, a potent inhibitor derived from dihydropyridophthalazinone. Acta Crystallogr F-Struct Biol Commun. 2014;70(9):1143–1149.
  • Cardnell RJ, Feng Y, Diao L, et al. Proteomic markers of DNA repair and PI3K pathway activation predict response to the PARP inhibitor BMN673 in small cell lung cancer. Clin Cancer Res. 2013;19(22):6322–6328.
  • Andrei A-Z, Hall A, Smith AL, et al. Increased in vitro and in vivo sensitivity of BRCA2-associated pancreatic cancer to the poly(adp-ribose) polymerase-1/2 inhibitor BMN673. Cancer Lett. 2015;364(1):8–16.
  • Huang J, Wang L, Cong Z, et al. The PARP-1 inhibitor BMN673 exhibits immunoregulatory effects in a BRCA1(-/-) murine model of ovarian cancer. Biochem Bioph Res Co. 2015;463(4):551–556.
  • Shen Y, Rehman FL, Feng Y, et al. BMN673, a novel and highly potent PARP-1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res. 2013;19(18):5003–5015.
  • Smith MA, Reynolds CP, Kang MH, et al. Synergistic activity of PARP inhibition by talazoparib (BMN673) with temozolomide in pediatric cancer models in the pediatric preclinical testing program. Clin Cancer Res. 2015;21(4):819–832.
  • Murai J, Pommier Y. The combination of the PARP inhibitor talazoparib (BMN673) with the ATR inhibitor VE-821 overcomes the drug resistance of schlafen 11-deficient cells. Cancer Res. 2015;75(15):2849–2849.
  • Mgi Gp Inc. Diazabenzo[de]anthracen-3-one compounds and methods for inhibiting PARP. WO2006078711. 2006.
  • Mgi Gp Inc. PARP inhibitor compounds, compositions and methods of use. WO2009046205. 2009.
  • Russo AL, Kwon H-C, Burgan WE, et al. In vitro and in vivo radiosensitization of glioblastoma cells by the poly (adp-ribose) polymerase inhibitor E7016. Clin Cancer Res. 2009;15(2):607–612.
  • McGonigle S, Chen Z, Wu J, et al. E7449: a dual inhibitor of PARP-1/2 and tankyrase1/2 inhibits growth of DNA repair deficient tumors and antagonizes Wnt signaling. Oncotarget. 2015;6(38):41307–41323.
  • Cephalon Inc. Novel multicyclic compounds and the use thereof. US2006276497. 2006.
  • Cephalon Inc. Method of radio-sensitizing tumors using a radio-sensitizing agent. WO2008063644. 2008.
  • Cephalon Inc. Novel forms of a multicyclic compound. WO2011028580. 2011.
  • Plummer R, Stephens P, Aissat-Daudigny L, et al. Phase I dose-escalation study of the PARP inhibitor CEP-9722 as monotherapy or in combination with temozolomide in patients with solid tumors. Cancer Chemoth Pharm. 2014;74(2):257–265.
  • Jian W, Xu HG, Chen J, et al. Activity of CEP-9722, a poly (adp-ribose) polymerase inhibitor, in urothelial carcinoma correlates inversely with homologous recombination repair response to DNA damage. Anticancer Drug. 2014;25(8):878–886.
  • Awada A, Campone M, Varga A, et al. An open-label, dose-escalation study to evaluate the safety and pharmacokinetics of CEP-9722 (a PARP-1 and PARP-2 inhibitor) in combination with gemcitabine and cisplatin in patients with advanced solid tumors. Anticancer Drug. 2016;27(4):342–348.
  • Jagtap PG, Baloglu E, Southan G, et al. Facile and convenient syntheses of 6,11-dihydro-5h-indeno[1,2-c]isoquinolin-5-ones and 6,11-dihydro-5h-indolo[3,2-c]isoquinolin-5-one. Org Lett. 2005;7(9):1753–1756.
  • Jagtap PG, Baloglu E, Southan GJ, et al. Discovery of potent poly(adp-ribose) polymerase-1 inhibitors from the modification of indeno[1,2-c]isoquinolinone. J Med Chem. 2005;48(16):5100–5103.
  • Zhou D, Chu W, Xu J, et al. Synthesis, F-18 radiolabeling, and evaluation of poly (adp-ribose) polymerase-1 (PARP-1) inhibitors for in vivo imaging of PARP-1 using positron emission tomography. Bioorg Med Chem. 2014;22(5):1700–1707.
  • Xie Z, Zhou Y, Zhao W, et al. Identification of novel PARP-1 inhibitors: drug design, synthesis and biological evaluation. Bioorg Med Chem Lett. 2015;25(20):4557–4561.
  • Chen J, Peng H, He J, et al. Synthesis of isoquinolinone-based tricycles as novel poly(adp-ribose) polymerase-1 (PARP-1) inhibitors. Bioorg Med Chem Lett. 2014;24(12):2669–2673.
  • Song M, Li J-L, Li X-P, et al. Targeting human poly(adp-ribose) polymerase-1 with natural medicines and its potential applications in ovarian cancer therapeutics. Arch Pharm (Weinheim). 2015;348(11):817–823.
  • Michels J, Vitale I, Saparbaev M, et al. Predictive biomarkers for cancer therapy with PARP inhibitors. Oncogene. 2014;33(30):3894–3907.
  • Shen Y, Aoyagi-Scharber M, Wang B. Trapping poly(adp-ribose) polymerase. J Pharmacol Exp Ther. 2015;353(3):446–457.
  • Lord CJ, Ashworth A. Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med. 2013;19(11):1381–1388.
  • Rottenberg S, Jaspers JE, Kersbergen A, et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USA. 2008;105(44):17079–17084.
  • Ha K, Fiskus W, Choi DS, et al. Histone deacetylase inhibitor treatment induces ‘BRCAness’ and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells. Oncotarget. 2014;5(14):5637–5650.
  • Livraghi L, Garber JE. PARP inhibitors in the management of breast cancer: current data and future prospects. BMC Med. 2015;13(1):188–203.
  • Cambronne XA, Stewart ML, Kim D, et al. Biosensor reveals multiple sources for mitochondrial NAD+. Science. 2016;352(6292):1474–1477.
  • Yergeri M. Current overview on the usage of poly(adp-ribose)polymerase (PARP) inhibitors in treating cancer. Clin Cancer Drugs. 2014;1(2):127–148.
  • Univ. Northeastern. Nanoparticle drug delivery system and method of treating cancer and neurotrauma. WO2015031536. 2015.
  • Brown JS, Kaye SB, Yap TA. PARP inhibitors: the race is on. Brit J Cancer. 2016;114(7):713–715.
  • Ljungman M. Targeting the DNA damage response in cancer. Chem Rev. 2009;109(7):2929–2950.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.