407
Views
34
CrossRef citations to date
0
Altmetric
Review

Novel leukotriene biosynthesis inhibitors (2012-2016) as anti-inflammatory agents

, &
Pages 607-620 | Received 06 Oct 2016, Accepted 19 Dec 2016, Published online: 05 Jan 2017

References

  • Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983;220:568–575.
  • Back M, Powell WS, Dahlen SE, et al. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. Br J Pharmacol. 2014;171:3551–3574.
  • Haeggstrom JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev. 2011;111:5866–5898.
  • Radmark O, Werz O, Steinhilber D, et al. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys Acta. 2015;1851:331–339.
  • Peters-Golden M, Henderson WR Jr. Leukotrienes. N Engl J Med. 2007;357:1841–1854.
  • Steinhilber D, Hofmann B. Recent advances in the search for novel 5-lipoxygenase inhibitors. Basic Clin Pharmacol Toxicol. 2014;114:70–77.
  • Pettersen D, Davidsson O, Whatling C. Recent advances for FLAP inhibitors. Bioorg Med Chem Lett. 2015;25:2607–2612.
  • Laidlaw TM, Boyce JA. Cysteinyl leukotriene receptors, old and new; implications for asthma. Clin Exp Allergy. 2012;42:1313–1320.
  • Radmark O, Werz O, Steinhilber D, et al. 5-Lipoxygenase: regulation of expression and enzyme activity. Trends Biochem Sci. 2007;32:332–341.
  • Capra V, Rovati GE, Mangano P, et al. Transcellular biosynthesis of eicosanoid lipid mediators. Biochim Biophys Acta. 2015;1851:377–382.
  • Gilbert NC, Bartlett SG, Waight MT, et al. The structure of human 5-lipoxygenase. Science (80-). 2011;331:217–219.
  • Werz O. 5-lipoxygenase: cellular biology and molecular pharmacology. Curr Drug Targets Inflamm Allergy. 2002;1:23–44.
  • Werz O, Klemm J, Samuelsson B, et al. 5-lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAP kinases. Proc Natl Acad Sci USA. 2000;97:5261–5266.
  • Werz O, Burkert E, Fischer L, et al. Extracellular signal-regulated kinases phosphorylate 5-lipoxygenase and stimulate 5-lipoxygenase product formation in leukocytes. Faseb J. 2002;16:1441–1443.
  • Werz O, Szellas D, Steinhilber D, et al. Arachidonic acid promotes phosphorylation of 5-lipoxygenase at Ser-271 by MAPK-activated protein kinase 2 (MK2). J Biol Chem. 2002;277:14793–14800.
  • Werz O, Klemm J, Samuelsson B, et al. Phorbol ester up-regulates capacities for nuclear translocation and phosphorylation of 5-lipoxygenase in Mono Mac 6 cells and human polymorphonuclear leukocytes. Blood. 2001;97:2487–2495.
  • Luo M, Jones SM, Phare SM, et al. Protein kinase A inhibits leukotriene synthesis by phosphorylation of 5-lipoxygenase on serine 523. J Biol Chem. 2004;279:41512–41520.
  • Flamand N, Luo M, Peters-Golden M, et al. Phosphorylation of serine 271 on 5-lipoxygenase and its role in nuclear export. J Biol Chem. 2009;284:306–313.
  • Pergola C, Dodt G, Rossi A, et al. ERK-mediated regulation of leukotriene biosynthesis by androgens: a molecular basis for gender differences in inflammation and asthma. Proc Natl Acad Sci USA. 2008;105:19881–19886.
  • Pergola C, Rogge A, Dodt G, et al. Testosterone suppresses phospholipase D, causing sex differences in leukotriene biosynthesis in human monocytes. Faseb J. 2011;25:3377–3387.
  • Basavarajappa D, Wan M, Lukic A, et al. Roles of coactosin-like protein (CLP) and 5-lipoxygenase-activating protein (FLAP) in cellular leukotriene biosynthesis. Proc Natl Acad Sci USA. 2014;111:11371–11376.
  • Rakonjac M, Fischer L, Provost P, et al. Coactosin-like protein supports 5-lipoxygenase enzyme activity and up-regulates leukotriene A4 production. Proc Natl Acad Sci USA. 2006;103:13150–13155.
  • Hornig C, Albert D, Fischer L, et al. 1-Oleoyl-2-acetylglycerol stimulates 5-lipoxygenase activity via a putative (phospho)lipid binding site within the N-terminal C2-like domain. J Biol Chem. 2005;280:26913–26921.
  • Jakobsson PJ, Morgenstern R, Mancini J, et al. Membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG). A widespread protein superfamily. Am J Respir Crit Care Med. 2000;161:S20–24.
  • Evans JF, Ferguson AD, Mosley RT, et al. What’s all the FLAP about?: 5-lipoxygenase-activating protein inhibitors for inflammatory diseases. Trends Pharmacol Sci. 2008;29:72–78.
  • Abramovitz M, Wong E, Cox ME, et al. 5-lipoxygenase-activating protein stimulates the utilization of arachidonic acid by 5-lipoxygenase. Eur J Biochem. 1993;215:105–111.
  • Gerstmeier J, Weinigel C, Barz D, et al. An experimental cell-based model for studying the cell biology and molecular pharmacology of 5-lipoxygenase-activating protein in leukotriene biosynthesis. Biochim Biophys Acta. 2014;1840:2961–2969.
  • Mancini JA, Waterman H, Riendeau D. Cellular oxygenation of 12-hydroxyeicosatetraenoic acid and 15-hydroxyeicosatetraenoic acid by 5-lipoxygenase is stimulated by 5-lipoxygenase-activating protein. J Biol Chem. 1998;273:32842–32847.
  • Strid T, Svartz J, Franck N, et al. Distinct parts of leukotriene C(4) synthase interact with 5-lipoxygenase and 5-lipoxygenase activating protein. Biochem Biophys Res Commun. 2009;381:518–522.
  • Gerstmeier J, Weinigel C, Rummler S, et al. Time-resolved in situ assembly of the leukotriene-synthetic 5-lipoxygenase/5-lipoxygenase-activating protein complex in blood leukocytes. Faseb J. 2016;30:276–285.
  • Mandal AK, Jones PB, Bair AM, et al. The nuclear membrane organization of leukotriene synthesis. Proc Natl Acad Sci USA. 2008;105:20434–20439.
  • Gerstmeier J, Newcomer ME, Dennhardt S, et al. 5-Lipoxygenase-activating protein rescues activity of 5-lipoxygenase mutations that delay nuclear membrane association and disrupt product formation. Faseb J. 2016;30:1892–1900.
  • Byrum RS, Goulet JL, Griffiths RJ, et al. Role of the 5-lipoxygenase-activating protein (FLAP) in murine acute inflammatory responses. J Exp Med. 1997;185:1065–1075.
  • Dixon RA, Diehl RE, Opas E, et al. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature. 1990;343:282–284.
  • Haeggstrom JZ, Wetterholm A. Enzymes and receptors in the leukotriene cascade. Cell Mol Life Sci. 2002;59:742–753.
  • Thunnissen MM, Nordlund P, Haeggstrom JZ. Crystal structure of human leukotriene A(4) hydrolase, a bifunctional enzyme in inflammation. Nat Struct Biol. 2001;8:131–135.
  • Snelgrove RJ, Jackson PL, Hardison MT, et al. A critical role for LTA4H in limiting chronic pulmonary neutrophilic inflammation. Science (80-). 2010;330:90–94.
  • Martinez Molina D, Wetterholm A, Kohl A, et al. Structural basis for synthesis of inflammatory mediators by human leukotriene C4 synthase. Nature. 2007;448:613–616.
  • Ago H, Kanaoka Y, Irikura D, et al. Crystal structure of a human membrane protein involved in cysteinyl leukotriene biosynthesis. Nature. 2007;448:609–612.
  • Saino H, Ukita Y, Ago H, et al. The catalytic architecture of leukotriene C4 synthase with two arginine residues. J Biol Chem. 2011;286:16392–16401.
  • Yoshimoto T, Soberman RJ, Spur B, et al. Properties of highly purified leukotriene C4 synthase of guinea pig lung. J Clin Invest. 1988;81:866–871.
  • Ahmad S, Ytterberg AJ, Thulasingam M, et al. phosphorylation of leukotriene C4 synthase at serine 36 impairs catalytic activity. J Biol Chem. 2016;291:18410–18418.
  • Leslie CC. Regulation of the specific release of arachidonic acid by cytosolic phospholipase A2. Prostaglandins Leukot Essent Fatty Acids. 2004;70:373–376.
  • Kulkarni S, Das S, Funk CD, et al. A molecular basis of specific subcellular localization of the C2-like domain of 5-lipoxygenase. J Biol Chem. 2002;277:13167–13174.
  • Bair AM, Turman MV, Vaine CA, et al. The nuclear membrane leukotriene synthetic complex is a signal integrator and transducer. Mol Biol Cell. 2012;23:4456–4464.
  • Newcomer ME, Gilbert NC. Location, location, location: compartmentalization of early events in leukotriene biosynthesis. J Biol Chem. 2010;285:25109–25114.
  • Powell WS, Rokach J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim Biophys Acta. 2015;1851:340–355.
  • Lammermann T, Afonso PV, Angermann BR, et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature. 2013;498:371–375.
  • Di Gennaro A, Haeggstrom JZ. The leukotrienes: immune-modulating lipid mediators of disease. Adv Immunol. 2012;116:51–92.
  • Greene ER, Huang S, Serhan CN, et al. Regulation of inflammation in cancer by eicosanoids. Prostaglandins & Other Lipid Med. 2011;96:27–36.
  • Chen M, Lam BK, Kanaoka Y, et al. Neutrophil-derived leukotriene B4 is required for inflammatory arthritis. J Exp Med. 2006;203:837–842.
  • Aiello RJ, Bourassa PA, Lindsey S, et al. Leukotriene B4 receptor antagonism reduces monocytic foam cells in mice. Arterioscler Thromb Vasc Biol. 2002;22:443–449.
  • Back M, Bu DX, Branstrom R, et al. Leukotriene B4 signaling through NF-kappaB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia. Proc Natl Acad Sci USA. 2005;102:17501–17506.
  • Wculek SK, Malanchi I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature. 2015;528:413–417.
  • Filgueiras LR, Brandt SL, Wang S, et al. Leukotriene B4-mediated sterile inflammation promotes susceptibility to sepsis in a mouse model of type 1 diabetes. Sci. 2015;8:ra10.
  • Pergola C, Werz O. 5-Lipoxygenase inhibitors: a review of recent developments and patents. Expert Opin Ther Pat. 2010;20:355–375.
  • Koeberle A, Laufer SA, Werz O. Design and development of microsomal prostaglandin E2 synthase-1 Inhibitors: challenges and future directions. J Med Chem. 2016;59:5970–5986.
  • Meirer K, Steinhilber D, Proschak E. Inhibitors of the arachidonic acid cascade: interfering with multiple pathways. Basic Clin Pharmacol Toxicol. 2014;114:83–91.
  • Pergola C, Gaboriaud-Kolar N, Jestadt N, et al. Indirubin core structure of glycogen synthase kinase-3 inhibitors as novel chemotype for intervention with 5-lipoxygenase. J Med Chem. 2014;57:3715–3723.
  • Feisst C, Pergola C, Rakonjac M, et al. Hyperforin is a novel type of 5-lipoxygenase inhibitor with high efficacy in vivo. Cell Mol Life Sci. 2009;66:2759–2771.
  • Steinbrink SD, Pergola C, Bühring U, et al. Sulindac sulfide suppresses 5-lipoxygenase at clinically relevant concentrations. Cell Mol Life Sci. 2010;67:797–806.
  • Werz O, Szellas D, Henseler M, et al. Nonredox 5-lipoxygenase inhibitors require glutathione peroxidase for efficient inhibition of 5-lipoxygenase activity. Mol Pharmacol. 1998;54:445–451.
  • Fischer L, Steinhilber D, Werz O. Molecular pharmacological profile of the nonredox-type 5-lipoxygenase inhibitor CJ-13,610. Br J Pharmacol. 2004;142:861–868.
  • Fischer L, Szellas D, Radmark O, et al. Phosphorylation- and stimulus-dependent inhibition of cellular 5-lipoxygenase activity by nonredox-type inhibitors. Faseb J. 2003;17:949–951.
  • Miller DK, Gillard JW, Vickers PJ, et al. Identification and isolation of a membrane protein necessary for leukotriene production. Nature. 1990;343:278–281.
  • Gillard J, Ford-Hutchinson AW, Chan C, et al. L-663,536 (MK-886) (3-1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2,2 - dimethylpropanoic acid), a novel, orally active leukotriene biosynthesis inhibitor. Can J Physiol Pharmacol. 1989;67:456–464.
  • Muller-Peddinghaus R, Fruchtmann R, Ahr HJ, et al. BAY X1005, a new selective inhibitor of leukotriene synthesis: pharmacology and pharmacokinetics. J Lipid Med. 1993;6:245–248.
  • Brideau C, Chan C, Charleson S, et al. Pharmacology of MK-0591 (3-[1-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2-yl-methoxy)- indol-2-yl]-2,2-dimethyl propanoic acid), a potent, orally active leukotriene biosynthesis inhibitor. Can J Physiol Pharmacol. 1992;70:799–807.
  • Ferguson AD, McKeever BM, Xu S, et al. Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein. Science (80-). 2007;317:510–512.
  • Antoniu SA. Targeting 5-lipoxygenase-activating protein in asthma and chronic obstructive pulmonary disease. Expert Opin Ther Targets. 2014;18:1285–1292.
  • Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510:92–101.
  • Lehmann C, Homann J, Ball AK, et al. Lipoxin and resolvin biosynthesis is dependent on 5-lipoxygenase activating protein. Faseb J. 2015;29:5029–5043.
  • Caliskan B, Banoglu E. Overview of recent drug discovery approaches for new generation leukotriene A4 hydrolase inhibitors. Expert Opin Drug Discov. 2013;8:49–63.
  • Kleinschmidt TK, Haraldsson M, Basavarajappa D, et al. Tandem benzophenone amino pyridines, potent and selective inhibitors of human leukotriene C4 synthase. J Pharmacol Exp Ther. 2015;355:108–116.
  • Orning L, Krivi G, Bild G, et al. Inhibition of leukotriene A4 hydrolase/aminopeptidase by captopril. J Biol Chem. 1991;266:16507–16511.
  • Orning L, Krivi G, Fitzpatrick FA. Leukotriene A4 hydrolase. Inhibition by bestatin and intrinsic aminopeptidase activity establish its functional resemblance to metallohydrolase enzymes. J Biol Chem. 1991;266:1375–1378.
  • Sandanayaka V, Mamat B, Mishra RK, et al. Discovery of 4-[(2S)-2-{[4-(4-chlorophenoxy)phenoxy]methyl}-1-pyrrolidinyl]butanoic acid (DG-051) as a novel leukotriene A4 hydrolase inhibitor of leukotriene B4 biosynthesis. J Med Chem. 2010;53:573–585.
  • Barchuk W, Lambert J, Fuhr R, et al. Effects of JNJ-40929837, a leukotriene A4 hydrolase inhibitor, in a bronchial allergen challenge model of asthma. Pulm Pharmacol Ther. 2014;29:15–23.
  • Lam BK, Penrose JF, Freeman GJ, et al. Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4. Proc Natl Acad Sci USA. 1994;91:7663–7667.
  • Tornhamre S, Schmidt TJ, Nasman-Glaser B, et al. Inhibitory effects of helenalin and related compounds on 5-lipoxygenase and leukotriene C(4) synthase in human blood cells. Biochem Pharmacol. 2001;62:903–911.
  • Mansour M, Tornhamre S. Inhibition of 5-lipoxygenase and leukotriene C4 synthase in human blood cells by thymoquinone. J Enzyme Inhib Med Chem. 2004;19:431–436.
  • Wisniewska JM, Rodl CB, Kahnt AS, et al. Molecular characterization of EP6–a novel imidazo[1,2-a]pyridine based direct 5-lipoxygenase inhibitor. Biochem Pharmacol. 2012;83:228–240.
  • Hieke M, Rodl CB, Wisniewska JM, et al. SAR-study on a new class of imidazo[1,2-a]pyridine-based inhibitors of 5-lipoxygenase. Bioorg Med Chem Lett. 2012;22:1969–1975.
  • Buscato E, Wisniewska JM, Rodl CB, et al. Structure-activity relationship and in vitro pharmacological evaluation of imidazo[1,2-a]pyridine-based inhibitors of 5-LO. Future Med Chem. 2013;5:865–880.
  • Barzen S, Rodl CB, Lill A, et al. Synthesis and biological evaluation of a class of 5-benzylidene-2-phenyl-thiazolinones as potent 5-lipoxygenase inhibitors. Bioorg Med Chem. 2012;20:3575–3583.
  • Lill AP, Rodl CB, Steinhilber D, et al. Development and evaluation of ST-1829 based on 5-benzylidene-2-phenylthiazolones as promising agent for anti-leukotriene therapy. Eur J Med Chem. 2015;89:503–523.
  • Sb MK, Woltersdorf S, Rodl CB, et al. Development of novel aminothiazole-comprising 5-LO inhibitors. Future Med Chem. 2016;8:149–164.
  • Hanke T, Dehm F, Liening S, et al. Aminothiazole-featured pirinixic acid derivatives as dual 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 inhibitors with improved potency and efficiency in vivo. J Med Chem. 2013;56:9031–9044.
  • Karg EM, Luderer S, Pergola C, et al. Structural optimization and biological evaluation of 2-substituted 5-hydroxyindole-3-carboxylates as potent inhibitors of human 5-lipoxygenase. J Med Chem. 2009;52:3474–3483.
  • Peduto A, Bruno F, Dehm F, et al. Further studies on ethyl 5-hydroxy-indole-3-carboxylate scaffold: design, synthesis and evaluation of 2-phenylthiomethyl-indole derivatives as efficient inhibitors of human 5-lipoxygenase. Eur J Med Chem. 2014;81:492–498.
  • Peduto A, Krauth V, Collarile S, et al. Exploring the role of chloro and methyl substitutions in 2-phenylthiomethyl-benzoindole derivatives for 5-LOX enzyme inhibition. Eur J Med Chem. 2016;108:466–475.
  • Schaible AM, Traber H, Temml V, et al. Potent inhibition of human 5-lipoxygenase and microsomal prostaglandin E(2) synthase-1 by the anti-carcinogenic and anti-inflammatory agent embelin. Biochem Pharmacol. 2013;86:476–486.
  • Filosa R, Peduto A, Aparoy P, et al. Discovery and biological evaluation of novel 1,4-benzoquinone and related resorcinol derivatives that inhibit 5-lipoxygenase. Eur J Med Chem. 2013;67:269–279.
  • Filosa R, Peduto A, Schaible AM, et al. Novel series of benzoquinones with high potency against 5-lipoxygenase in human polymorphonuclear leukocytes. Eur J Med Chem. 2015;94:132–139.
  • Schaible AM, Filosa R, Temml V, et al. Elucidation of the molecular mechanism and the efficacy in vivo of a novel 1,4-benzoquinone that inhibits 5-lipoxygenase. Br J Pharmacol. 2014;171:2399–2412.
  • Schaible AM, Filosa R, Krauth V, et al. The 5-lipoxygenase inhibitor RF-22c potently suppresses leukotriene biosynthesis in cellulo and blocks bronchoconstriction and inflammation in vivo. Biochem Pharmacol. 2016;112:60–71.
  • De Lucia D, Lucio OM, Musio B, et al. Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors. Eur J Med Chem. 2015;101:573–583.
  • Doiron JA, Leblanc LM, Hebert MJ, et al. Structure-activity relationship of caffeic acid phenethyl ester analogs as new 5-lipoxygenase inhibitors. Chem Biol Drug Des. 2016. DOI:10.1111/cbdd.12874
  • Schieferdecker S, Konig S, Koeberle A, et al. Myxochelins target human 5-lipoxygenase. J Nat Prod. 2015;78:335–338.
  • Korp J, Konig S, Schieferdecker S, et al. Harnessing enzymatic promiscuity in myxochelin biosynthesis for the production of 5-lipoxygenase inhibitors. ChemBioChem. 2015;16:2445–2450.
  • Srivastava P, Vyas VK, Variya B, et al. Synthesis, anti-inflammatory, analgesic, 5-lipoxygenase (5-LOX) inhibition activities, and molecular docking study of 7-substituted coumarin derivatives. Bioorg Chem. 2016;67:130–138.
  • Zhou Y, Liu J, Zheng M, et al. Structural optimization and biological evaluation of 1,5-disubstituted pyrazole-3-carboxamines as potent inhibitors of human 5-lipoxygenase. Acta Pharm Sin B. 2016;6:32–45.
  • Suh JH, Yum EK, Cho YS. Synthesis and Biological Evaluation of N-Aryl-5-aryloxazol-2-amine derivatives as 5-Lipoxygenase Inhibitors. Chem Pharm Bull. 2015;63:573–578.
  • Gaztanaga J, Farkouh M, Rudd JH, et al. A phase 2 randomized, double-blind, placebo-controlled study of the effect of VIA-2291, a 5-lipoxygenase inhibitor, on vascular inflammation in patients after an acute coronary syndrome. Atherosclerosis. 2015;240:53–60.
  • Stock NS, Bain G, Zunic J, et al. 5-Lipoxygenase-activating protein (FLAP) inhibitors. part 4: development of 3-[3-tert-butylsulfanyl-1-[4-(6-ethoxypyridin-3-yl)benzyl]-5-(5-methylpyridin-2-y lmethoxy)-1H-indol-2-yl]-2,2-dimethylpropionic acid (AM803), a potent, oral, once daily FLAP inhibitor. J Med Chem. 2011;54:8013–8029.
  • Bain G, King CD, Schaab K, et al. Pharmacodynamics, pharmacokinetics and safety of GSK2190915, a novel oral anti-inflammatory 5-lipoxygenase-activating protein inhibitor. Br J Clin Pharmacol. 2013;75:779–790.
  • Mosteller M, Condreay LD, Harris EC, et al. Exploring the roles of UGT1A1 and UGT1A3 in oral clearance of GSK2190915, a 5-lipoxygenase-activating protein inhibitor. Pharmacogenet Genomics. 2014;24:618–621.
  • Singh D, Boyce M, Norris V, et al. Inhibition of the early asthmatic response to inhaled allergen by the 5-lipoxygenase activating protein inhibitor GSK2190915: a dose-response study. Int J Gen Med. 2013;6:897–903.
  • Follows RM, Snowise NG, Ho SY, et al. Efficacy, safety and tolerability of GSK2190915, a 5-lipoxygenase activating protein inhibitor, in adults and adolescents with persistent asthma: a randomised dose-ranging study. Respir Res. 2013;14:54.
  • Kent SE, Bentley JH, Miller D, et al. The effect of GSK2190915, a 5-lipoxygenase-activating protein inhibitor, on exercise-induced bronchoconstriction. Allergy Asthma Proc. 2014;35:126–133.
  • Lemurell M, Ulander J, Winiwarter S, et al. Discovery of AZD6642, an inhibitor of 5-lipoxygenase activating protein (FLAP) for the treatment of inflammatory diseases. J Med Chem. 2015;58:897–911.
  • Lindelof A, Ericsson C, Simonsson R, et al. Synthesis of [(3) H] and [(2) H6] AZD6642, an inhibitor of 5-lipoxygenase activating protein (FLAP). J Labelled Comp Radiopharm. 2016;59:340–345.
  • Bartolozzi A, Bosanac T, Chen Z, et al. WO 2012/024150 A1. 2012.
  • Takahashi H, Riether D, Bartolozzi A, et al. Synthesis, SAR, and series evolution of novel oxadiazole-containing 5-lipoxygenase activating protein inhibitors: discovery of 2-[4-(3-{(r)-1-[4-(2-amino-pyrimidin-5-yl)-phenyl]-1-cyclopropyl-ethyl}-[1,2,4]ox adiazol-5-yl)-pyrazol-1-yl]-N,N-dimethyl-acetamide (BI 665915). J Med Chem. 2015;58:1669–1690.
  • Fandrick KR, Mulder JA, Patel ND, et al. Development of an asymmetric synthesis of a chiral quaternary FLAP inhibitor. J Org Chem. 2015;80:1651–1660.
  • Banoglu E, Caliskan B, Luderer S, et al. Identification of novel benzimidazole derivatives as inhibitors of leukotriene biosynthesis by virtual screening targeting 5-lipoxygenase-activating protein (FLAP). Bioorg Med Chem. 2012;20:3728–3741.
  • Pergola C, Gerstmeier J, Monch B, et al. The novel benzimidazole derivative BRP-7 inhibits leukotriene biosynthesis in vitro and in vivo by targeting 5-lipoxygenase-activating protein (FLAP). Br J Pharmacol. 2014;171:3051–3064.
  • Levent S, Gerstmeier J, Olgac A, et al. Synthesis and biological evaluation of C(5)-substituted derivatives of leukotriene biosynthesis inhibitor BRP-7. Eur J Med Chem. 2016;122:510–519.
  • Banoglu E, Caliskan B, Werz O Isoxazole derivatives as leukotriene biosynthesis inhibitorsEP2949653 A1. 2015.
  • Banoglu E, Celikoglu E, Volker S, et al. 4,5-Diarylisoxazol-3-carboxylic acids: A new class of leukotriene biosynthesis inhibitors potentially targeting 5-lipoxygenase-activating protein (FLAP). Eur J Med Chem. 2016;113:1–10.
  • Garscha U, Voelker S, Pace S, et al. BRP-187: a potent inhibitor of leukotriene biosynthesis that acts through impeding the dynamic 5-lipoxygenase /5-lipoxygenase-activating protein (FLAP) complex assembly. Biochem Pharmacol. 2016;119:17–26.
  • Bacani GM, Broggini D, Cheung EY, et al. Thiazolopyridin-2-yloxy-phenyl and thiazolopyrazin-2-yloxy-phenyl amines as modulators of leukotriene A4 hydrolase.EP 2336125 B1. 2013.
  • Bacani GM, Chrovian CC, Eccles W, et al. Compounds with two fused bicyclic heteroaryl moieties as modulators of leukotriene a4 hydrolaseEP 2430019 B1. 2013.
  • Tanis VM, Bacani GM, Blevitt JM, et al. Azabenzthiazole inhibitors of leukotriene A(4) hydrolase. Bioorg Med Chem Lett. 2012;22:7504–7511.
  • Ward PD, La D. Testicular distribution and toxicity of a novel LTA4H inhibitor in rats. Toxicol Appl Pharmacol. 2014;278:26–30.
  • Eccles W, Blevitt JM, Booker JN, et al. Identification of benzofuran central cores for the inhibition of leukotriene A(4) hydrolase. Bioorg Med Chem Lett. 2013;23:811–815.
  • Meng H, Liu Y, Zhai Y, et al. Optimization of 5-hydroxytryptamines as dual function inhibitors targeting phospholipase A2 and leukotriene A4 hydrolase. Eur J Med Chem. 2013;59:160–167.
  • Stsiapanava A, Olsson U, Wan M, et al. Binding of Pro-Gly-Pro at the active site of leukotriene A4 hydrolase/aminopeptidase and development of an epoxide hydrolase selective inhibitor. Proc Natl Avad Sci USA. 2014;111:4227–4232.
  • Ago H, Okimoto N, Kanaoka Y, et al. A leukotriene C4 synthase inhibitor with the backbone of 5-(5-methylene-4-oxo-4,5-dihydrothiazol-2-ylamino) isophthalic acid. J Biochem. 2013;153:421–429.
  • Nilsson P, Pelcman B, Kathevics M, et al. Bis aromatic compounds for use as ltc4 synthase inhibitorsEP 2429994 A1. 2012.
  • Liening S, Scriba GK, Rummler S, et al. Development of smart cell-free and cell-based assay systems for investigation of leukotriene C4 synthase activity and evaluation of inhibitors. Biochim Biophys Acta. 2016;1861:1605–1613.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.