184
Views
7
CrossRef citations to date
0
Altmetric
Review

Recent advances of pyrrolopyridines derivatives: a patent and literature review

&
Pages 591-606 | Received 10 Jul 2016, Accepted 06 Jan 2017, Published online: 27 Jan 2017

References

  • Girgis NS, Larson SB, Robins RK, et al. The synthesis of 5-azaindoles by substitution-rearrangement of 7-azaindoles upon treatment with certain primary amines. J Heterocycl Chem. 1989;26:317–325.
  • Reisch J. Notiz uber die Synthese des 7-Aza-indols aus 3-Athinyl-pyridin. Chem Ber. 1964;97:2717–2718.
  • Genentech Inc. Preparation of N-substituted azaindoles as MEK kinase inhibitor. WO 2008157179. 2008.
  • El-Gamal MI, Jung M-H, Oh C-H. Discovery of a new potent bisamide FMS kinase inhibitor. Bioorg Med Chem Lett. 2010;20:3216–3218.
  • Hong S, Lee S, Kim B, et al. Discovery of new azaindole-based PI3Kα inhibitors: apoptotic and antiangiogenic effect on cancer cells. Bioorg Med Chem Lett. 2010;20:7212–7215.
  • El-Gamal MI, Oh C-H. Design and synthesis of an anticancer diarylurea derivative with multiple-kinase inhibitory effect. Bull Korean Chem Soc. 2012;33:1571–1576.
  • Hong S, Kim J, Seo JH, et al. Design, synthesis, and evaluation of 3,5-disubstituted 7-azaindoles as Trk inhibitors with anticancer and antiangiogenic activities. J Med Chem. 2012;55:5337–5349.
  • Tong Y, Stewart KD, Florjancic AS, et al. Azaindole-based inhibitors of Cdc7 kinase: impact of the pre-DFG residue, Val 195. ACS Med Chem Lett. 2013;4:211–215.
  • Carbone A, Pennati M, Parrino B, et al. Novel 1H-pyrrolo[2,3-b]pyridine derivative nortopsentin analogues: synthesis and antitumor activity in peritoneal mesothelioma experimental models. J Med Chem. 2013;56:7060–7072.
  • Lee S, Lee H, Kim J, et al. Development and biological evaluation of potent and selective c-KITD816V inhibitors. J Med Chem. 2014;57:6428–6443.
  • Smithkline Beecham Corp 1H-Pyrrolo[2,3-b]pyridines. WO2006063167. 2006.
  • PLEXXIKON Inc. Pyrrolo[2,3-b]pyridine derivatives as kinase modulators. WO2008079906. 2008.
  • SGX Pharmaceuticals Inc. Pyrrolo-pyridine kinase modulators. US7601839. 2009.
  • Muchova T, Pracharova J, Starha P, et al. Insight into the cytotoxic effects of cis-dichloridoplatinum(II) complexes containing 7-azaindole halogeno derivatives in tumor cells. J Biol Inorg Chem. 2013;18:579–589.
  • Cincinelli R, Musso L, Merlini L, et al. 7-Azaindole-1-carboxamides as a new class of PARP-1 inhibitors. Bioorg Med Chem. 2014;22:1089–1103.
  • Narva S, Chitti S, Bala BR, et al. Synthesis and biological evaluation of pyrrolo[2,3-b]pyridine analogues as antiproliferative agents and their interaction with calf thymus DNA. Eur J Med Chem. 2016;114:220–231.
  • Schering Corp. Preparation of 2,3-substituted azaindole derivatives for treating viral infections. WO2009032125. 2009.
  • Clark MP, Ledeboer MW, Davies I, et al. Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of Influenza PB2. J Med Chem. 2014;57:6668–6678.
  • Anilkumar GN, Rosenblum SB, Venkatraman S, et al. 2,3-Disubstituted azaindole derivatives for treating viral infections. US20100239527. 2010.
  • Blass B. Pyrrolopyridine or pyrazolopyridine derivatives. WO2015028483. 2015.
  • Dyke HJ, Price S, Williams K. N-substituted azaindoles and methods of use. US20100216768. 2010.
  • Goodfellow VS, Loweth CJ, Ravula SB, et al. Discovery, synthesis, and characterization of an orally bioavailable, brain penetrant inhibitor of mixed lineage kinase 3. J Med Chem. 2013;56:8032–8048.
  • Yakhontov LN. The chemistry of azaindoles [pyrrolo[2,3]pyridines]. Russ Chem Rev. 1968;37:551–565.
  • Zhihui W, Xiao W. Synthesis of azaindoles. Prog Chem. 2012;24:1974–1982.
  • Merour JY, Buron F, Bonnet P, et al. The azaindole framework in the design of kinase inhibitors. Molecules. 2014;19:19935–19979.
  • Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–819.
  • Dias SR, Salmonson T, Zwieten-Boot B, et al. The European Medicines Agency review of vemurafenib (Zelboraf) for the treatment of adult patients with BRAF V600 mutation-positive unresectable or metastatic melanoma. Eur J Cancer. 2013;49:1654–1661.
  • Chapman PB, Hauschild A, Robert C. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–2516.
  • Sosman JA, Kim KB, Schuchter L, et al. BRAF V600–Mutant Advanced Melanoma Treated with Vemurafenib. N Engl J Med. 2012;366:707–714.
  • FDA Medical Device Approval Cobas 4800 BRAF V600 Mutation Test. [cited 2016 Dec 15]. Available form: http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/eviceApprovals and Clearances/Recently-Approved Devices/ucm26 8836.htm
  • Stites EC. The Response of Cancers to BRAF Inhibition Underscores the Importance of Cancer Systems Biology. Sci Signal. 2012;5:46.
  • Ravnan MC, Matalka MS. Vemurafenib in Patients with BRAF V600E Mutation–Positive Advanced Melanoma. Clin Therapeut. 2012;34:1474–1486.
  • SurExam Biotechnology. Specific primers and liquid chips for detecting BRAF gene mutation. WO2011131146. 2011.
  • Response Genetics Inc. Methods, primers, probes and kits useful for the detection of braf mutations. WO2011019704. 2011.
  • Heidelberg University. Means and methods for diagnosing cancer using an antibody which specifically binds to braf v600e. WO2012042009. 2012.
  • Chung-Pu W, Hong-May S. Overexpression of ATP-binding cassette transporter ABCG2 as a potential mechanism of acquired resistance to vemurafenib in BRAF(V600E) mutant cancer cells. Biochem Pharmacol. 2013;85:325–334.
  • Poulikakos PI, Persaud Y, Janakiraman M, et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature. 2011;480:387–390.
  • F. Hoffmann-La Roche Ag. Combination therapy comprising vemurafenib and an interferon for use in the treatment of cancer. WO2012080151. 2012.
  • F. Hoffmann-La Roche Ag. Nouvelle polythérapie destinée à traiter le cancer. WO2012022677. 2012.
  • University of California. Compositions and methods for detection and treatment of b-raf inhibitor-resistant melanomas. WO2012068562. 2012.
  • University of California. Compositions and methods for detection and treatment of b-raf inhibitor-resistant melanomas. EP2640860. 2013.
  • University of California. Compositions and methods for detection and treatment of b-raf inhibitor-resistant melanomas. US20130217721. 2013.
  • University of Pittsburgh. Methods for treating a tumor using an antibody that specifically binds grp94. WO2012075327. 2012.
  • University of Pittsburgh. Methods for treating a tumor using an antibody that specifically binds grp94. EP2646054. 2013.
  • TEVA Pharmaceuticals USA, Inc. Solid state form of vemurafenib choline salt. WO2014008270. 2014.
  • CIPLA Limited. Pharmaceutical composition comprising vemurafenib. WO2015121649. 2015.
  • Laurus Labs Private Limited. Novel processes for the preparation of vemurafenib. WO2015075749. 2015.
  • Shipla Medicare Limited. Substantially pure vemurafenib and its salts. WO2016083956. 2016.
  • Oh C-H, Jung M-H, El-Gamal MI, et al. Pyrrolo[3,2-c]pyridine derivatives and preparation thereof. Repub. Korean Kongkae Taeho Kongbo. KR 2012040980. 2012.
  • El-Gamal MI, Abdel-Maksoud MS, Gamal El-Din MM, et al. Cell-based biological evaluation of a new bisamide FMS kinase inhibitor possessing pyrrolo[3,2-c]pyridine scaffold. Arch Pharm Chem Life Sci. 2014;347:635–641.
  • Yun HJ, Kim G, Khanal P, et al. Inhibitory effects of a new 1H-pyrrolo[3,2-c]pyridine derivative, KIST101029, on activator protein-1 activity and neoplastic cell transformation induced by insulin-like growth factor-1. Biol Pharm Bull. 2013;36:1466–1473.
  • El-Gamal MI, Jung M-H, Lee WS, et al. Design, synthesis, and antiproliferative activity of new 1H-pyrrolo[3,2-c]pyridine derivatives against melanoma cell lines. Eur J Med Chem. 2011;46:3218–3226.
  • Jung M-H, El-Gamal MI, Abdel-Maksoud MS, et al. Design, synthesis, and antiproliferative activity of new 1H-pyrrolo[3,2-c]pyridine derivatives against melanoma cell lines. Part 2. Bioorg Med Chem Lett. 2012;22:4362–4367.
  • Wilhelm S, Carter C, Lynch M, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006;5:835–844.
  • El-Gamal MI, Anbar HS, Yoo KH, et al. FMS kinase inhibitors: current status and future prospects. Med Res Rev. 2013;33:599–636.
  • Sapi E. The role of CSF-1 in normal physiology of mammary gland and breast cancer: an update. Exp Biol Med. 2004;229:1–11.
  • Kacinski BM, Carter D, Mittal K, et al. Ovarian adenocarcinomas express fms-complementary transcripts and fms antigen, often with coexpression of CSF-1. Am J Pathol. 1990;137:135–147.
  • Kacinski BM, Scata KA, Carter D, et al. FMS (CSF-1 receptor) and CSF-1 transcripts and protein are expressed by human breast carcinomas in vivo and in vitro. Oncogene. 1991;6:941–952.
  • Filderman AE, Bruckner A, Kacinski BM, et al. Macrophage colony-stimulating factor (CSF-1) enhances invasiveness in CSF-1 receptor-positive carcinoma cell lines. Cancer Res. 1992;52:3661–3666.
  • Bousset K, Diffley JF. The Cdc7 protein kinase is required for origin firing during S phase. Genes Dev. 1998;12:480–490.
  • Jiang W, McDonald D, Hope TJ, et al. Mammalian Cdc7-Dbf4 protein kinase complex is essential for initiation of DNA replication. EMBO J. 1999;18:5703–5713.
  • Kumagai H, Sato N, Yamada M, et al. A novel growth- and cell cycle-regulated protein, ASK, activates human Cdc7-related kinase and is essential for G1/S transition in mammalian cells. Mol Cell Biol. 1999;19:5083–5095.
  • Montagnoli A, Bosotti R, Villa F, et al. Drf1, a novel regulatory subunit for human Cdc7 kinase. EMBO J. 2002;2:3171–3181.
  • Antman K, Shemin R, Ryan L, et al. Malignant mesothelioma: prognostic variables in a registry of 180 patients, the Dana-Farber Cancer Institute and Brigham and Women’s Hospital experience over two decades, 1965-1985. J Clin Oncol. 1988;6:147–153.
  • Baratti D, Kusamura S, Deraco M. Diffuse malignant peritoneal mesothelioma: systematic review of clinical management and biological research. J Surg Oncol. 2011;103:822–831.
  • Gummadi VR, Rajagopalan S, Looi C-Y, et al. Discovery of 7-azaindole based anaplastic lymphoma kinase (ALK) inhibitors: wild type and mutant (L1196M) active compounds with unique binding mode. Bioorg Med Chem Lett. 2013;23:4911–4918.
  • Bryan MC, Falsey JR, Frohn M, et al. N-substituted azaindoles as potent inhibitors of Cdc7 kinase. Bioorg Med Chem Lett. 2013;23:2056–2060.
  • Nakajima Y, Tojo T, Morita M, et al. Synthesis and evaluation of 1H-pyrrolo[2,3-b]pyridine derivatives as novel immunomodulators targeting Janus kinase 3. Chem Pharm Bull. 2015;63:341–353.
  • Lee W, Crawford JJ, Aliagas I, et al. Synthesis and evaluation of a series of 4-azaindole-containing p21-activated kinase-1 inhibitors. Bioorg Med Chem Lett. 2016;26:3518–3524.
  • Zhu W, Wang W, Xu S, et al. Design, synthesis, and docking studies of phenylpicolinamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety as c-Met inhibitors. Bioorg Med Chem. 2016;24:812–819.
  • Ullrich A, Falcenberg M Pyrrolo[3,2-c]pyridine compounds as G-protein-coupled receptor kinase 5 (GRK5) modulators and their preparation. WO 2014207260. 2014.
  • Gelatsis P, Hayward MM, Kormos BL, et al. Preparation of novel 3,4-disubstituted-1H-pyrrolo[2,3-b]pyridines and 4,5-disubstituted-7H-pyrrolo[2,3-c]pyridazines as LRRK2 inhibitors. WO 2015092592. 2015.
  • Tang Q, Wang L, Tu Y, et al. Discovery of novel pyrrolo[2,3-b]pyridine derivatives bearing 1,2,3-triazole moiety as c-Met kinase inhibitors. Bioorg Med Chem Lett. 2016;26:1680–1684.
  • Seo JH, Jung KH, Son MK, et al. Anti-cancer effect of HS-345, a new tropomysin-related kinase A inhibitor, on human pancreatic cancer. Cancer Lett. 2013;338:271–278.
  • Ryu Y-L, Jung KH, Son MK, et al. Anticancer activity of HS-527, a novel inhibitor targeting PI3-kinase in human pancreatic cancer cells. Cancer Lett. 2014;353:68–77.
  • Aventis Pharma. New bis-azaindole derivatives, their preparation, and their pharmaceutical use as protein kinase inhibitors and antiproliferative agents. US 7786114. 2010.
  • Oribase Pharma. Nouveaux derives d’azaindoles en tant qu’inhibiteurs de proteins kinases. FR 3000494. 2014.
  • Oribase Pharma. Azaindoles as protein kinase inhibitors and their preparation. FR 3000493 and WO 2014102376. 2014.
  • Boyd MJ, Bandarage UK, Bennett H, et al. Isosteric replacement of carboxylic acid of drug candidate VX-787: effect of charge on antiviral potency and kinase activity of azaindole-based influenza PB2 inhibitors. Bioorg Med Chem Lett. 2015;25:1990–1994.
  • Esteve C, Gonzalez J, Gual S, et al. Discovery of 7-azaindole derivatives as potent Orai inhibitors showing efficacy in a preclinical model of asthma. Bioorg Med Chem Lett. 2015;25:1217–1222.
  • Fabritius C-H, Pesonen U, Messinger J, et al. 1-Sulfonyl-6-piperazinyl-7-azaindoles as potent and pseudoselective 5-HT6 receptor antagonists. Bioorg Med Chem Lett. 2016;26:2610–2615.
  • Hu L, Ju L, Mao Z, et al. Preparation of pyrrolo[2,3-b]pyridine-2-carboxamide compounds as HIV-1 integrase inhibitor. CN 105294688. 2016.
  • Kim BJ, Kim JH, Lee IY, et al. Preparation of pyrrolopyridine derivatives as HIV inhibitors. KR 2015141275. 2015.
  • Edwards HJ, Evans DM, Davie RL, et al. Preparation of bicyclic pyrrolopyridine derivatives useful as inhibitors of plasma Kallikrein. WO 2015022547. 2015.
  • Chen YK, Wallace MB Pyrrolo[3,2-b]pyridine derivatives as histone demethylase inhibitors and their preparation. WO 2016044138. 2016.
  • Razavi H, Riether D, Harcken C, et al. Discovery of a potent and dissociated non-steroidal glucocorticoid receptor agonist containing an alkyl carbinol pharmacophore. Bioorg Med Chem Lett. 2014;24:1934–1940.
  • Sandham DA, Arnold N, Aschauer H, et al. Discovery and optimization of NVP-QAV680, a potent and selective CRTh2 receptor antagonist suitable for clinical testing in allergic diseases. Bioorg Med Chem. 2013;21:6582–6591.
  • Hirai H, Tanaka K, Yoshie O, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med. 2001;193:255–261.
  • Alonso JA, Andres M, Bravo M, et al. Structure-activity relationships (SAR) and structure-kinetic relationships (SKR) of bicyclic heteroaromatic acetic acids as potent CRTh2 antagonists II: lead optimization. Bioorg Med Chem Lett. 2014;24:5123–5126.
  • Alonso JA, Andres M, Bravo M, et al. Structure-activity relationships (SAR) and structure-kinetic relationships (SKR) of bicyclic heteroaromatic acetic acids as potent CRTh2 antagonists III: the role of a hydrogen-bond acceptor in long receptor residence time. Bioorg Med Chem Lett. 2014;24:5127–5133.
  • Chen G, Ren H, Zhang N, et al. 6-(Azaindol-2-yl)pyridine-3-sulfonamides as potent and selective inhibitors targeting hepatitis C virus NS4B. Bioorg Med Chem Lett. 2015;25:781–786.
  • Liu T, Huang B, Zhan P, et al. Discovery of small molecular inhibitors targeting HIV-1 gp120-CD4 interaction drived from BMS-378806. Eur J Med Chem. 2014;86:481–490.
  • Wang T, Yang Z, Zhang Z, et al. Inhibitors of HIV-1 attachment. Part 10. The discovery and structure-activity relationships of 4-azaindole cores. Bioorg Med Chem Lett. 2013;23:213–217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.