4,813
Views
13
CrossRef citations to date
0
Altmetric
Review

Progress of Middle East respiratory syndrome coronavirus vaccines: a patent review

, , &
Pages 721-731 | Received 12 May 2016, Accepted 09 Jan 2017, Published online: 25 Jan 2017

References

  • Zaki AM, Van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012 Nov 8;367(19):1814–1820.
  • Azhar EI, Hashem AM, El-Kafrawy SA, et al. Detection of the Middle East respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient. Mbio. 2014;5(4):e01450–14.
  • Kandeel M. Bioinformatics analysis of the recent MERS-coV with special reference to the virus-encoded spike protein. Mol Enzymol Drug Targets. 2014;1(1):1–10.
  • Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet. 2015 Sep 5;386(9997):995–1007.
  • Haagmans BL, Al Dhahiry SH, Reusken CB, et al. Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect Dis. 2014 Feb;14(2):140–145.
  • Meyer B, Muller MA, Corman VM, et al. Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013. Emerg Infect Dis. 2014 Apr;20(4):552–559.
  • Azhar EI, El-Kafrawy SA, Farraj SA, et al. Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med. 2014 Jun 26;370(26):2499–2505.
  • Muller MA, Meyer B, Corman VM, et al. Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study. Lancet Infect Dis. 2015 Jun;15(6):629.
  • (WHO) WHO. Middle East respiratory syndrome coronavirus (MERS-CoV) – Republic of Korea. 2015. Available from: http://www.who.int/csr/don/24-may-2015-mers-korea/en/
  • (WHO) WHO. MERS-CoV in the Republic of Korea at a glance. 2015. Available from: http://www.wpro.who.int/outbreaks_emergencies/wpro_coronavirus/en/
  • Arabi YM, Arifi AA, Balkhy HH, et al. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med. 2014 Mar;160(6):389–397.
  • Kyratsous C, Stah LN, Sivapalasingam S, inventors; Human antibodies to Middle East respiratory syndrome coronavirus spike protein. WO2015179535. 2015.
  • Marasco W, Tang X, inventors; Middle East respiratory syndrome coronavirus neutralizing antibodies and methods of use thereof patent. WO2015164865. 2014.
  • Dimitrov D, Ying T, Ju TW, et al. Human monoclonal antibodies against the Middle East respiratory syndrome coronavirus (MERS-CoV) and engineered bispecific fusions with inhibitory peptides patent. WO2015057942. 2015.
  • Ying T, Du L, Ju TW, et al. Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies. J Virol. 2014 Jul;88(14):7796–7805.
  • Ying T, Prabakaran P, Du L, et al. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody. Nat Commun. 2015;6:8223.
  • Hodge TW. Methods of treating viral infections, particularly rabies, MERS-CoV, influenza, ebola, chikungunya, venezuelan equine encephalitis, canine parvovirus, adenovirus, respiratory syncytial virus, rhinovirus and poxvirus in mammalian patients. US201514736170. 2015.
  • Haagmans BL, Van Den Brand JM, Raj VS, et al. An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels. Science. 2016 Jan 1;351(6268):77–81.
  • Du L, Jiang S. Middle East respiratory syndrome: current status and future prospects for vaccine development. Expert Opin Biol Ther. 2015;15(11):1647–1651.
  • Papaneri AB, Johnson RF, Wada J, et al. Middle East respiratory syndrome: obstacles and prospects for vaccine development. Expert Rev Vaccines. 2015;14(7):949–962.
  • Haagmans BL, Bestebroer TM, Van Boheemen S, et al. Human betacoronavirus lineage C and identification of N-terminal dipeptidyl peptidase as its virus receptor. WO2014045254A2. 2014.
  • Lee H, Lei H, Santarsiero BD, et al. Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV. ACS Chem Biol. 2015 Jun 19;10(6):1456–1465.
  • Woo PC, Lau SK, Chu CM, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005 Jan;79(2):884–895.
  • Van Boheemen S, De Graaf M, Lauber C, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. Mbio. 2012;3(6):e00473-12.
  • Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1–23.
  • Neuman BW, Adair BD, Yoshioka C, et al. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol. 2006 Aug;80(16):7918–7928.
  • Barcena M, Oostergetel GT, Bartelink W, et al. Cryo-electron tomography of mouse hepatitis virus: insights into the structure of the coronavirion. Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):582–587.
  • Delmas B, Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol. 1990 Nov;64(11):5367–5375.
  • Beniac DR, Andonov A, Grudeski E, et al. Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol. 2006 Aug;13(8):751–752.
  • Walls AC, Tortorici MA, Bosch BJ, et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature. 2016;531(7592):114–117.
  • Farzan M, Li W, Moore MJ, inventors; Angiotensin-converting enzyme-2 as a receptor for the SARS coronavirus. WO2005032487. 2005.
  • Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013 Mar 14;495(7440):251–254.
  • Kyratsous C, Mujica A, inventors; Humanized dipeptidyl peptidase IV (DPP4) animals patent. US2015351372. 2015.
  • Agrawal AS, Garron T, Tao X, et al. Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease. J Virol. 2015 Apr;89(7):3659–3670.
  • Wang N, Shi X, Jiang L, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013 Aug;23(8):986.
  • Jiang S, Du L Immunogenic composition for MERS coronavirus infection patent. WO2014134439. 2014.
  • Lin K, Roosinovich E, Ma B, et al. Therapeutic HPV DNA vaccines. Immunol Res. 2010 Jul;47(1–3):86–112.
  • Graham RL, Donaldson EF, Baric RS. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol. 2013 Dec;11(12):836–848.
  • Sui J, Deming M, Rock B, et al. Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness. J Virol. 2014 Dec;88(23):13769–13780.
  • Coleman CM, Frieman MB. Coronaviruses: important emerging human pathogens. J Virol. 2014 May;88(10):5209–5212.
  • Muthumani K, Falzarano D, Reuschel EL, et al. A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med. 2015 Aug 19;7(301):ra132.
  • Shedlock DJ, Talbott KT, Cress C, et al. A highly optimized DNA vaccine confers complete protective immunity against high-dose lethal lymphocytic choriomeningitis virus challenge. Vaccine. 2011 Sep 9;29(39):6755–6762.
  • Muthumani K, Flingai S, Wise M, et al. Optimized and enhanced DNA plasmid vector based in vivo construction of a neutralizing anti-HIV-1 envelope glycoprotein Fab. Hum Vaccin Immunother. 2013 Oct;9(10):2253–2262.
  • Weiner DB, Muthumani K, Sardesai NY, inventors; MERS-CoV vaccine patent. WO2015081155. 2014.
  • Wang L, Shi W, Joyce MG, et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun. 2015;6:7712.
  • Chan KH, Chan JF, Tse H, et al. Cross-reactive antibodies in convalescent SARS patients’ sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests. J Infect. 2013 Aug;67(2):130–140.
  • Perera RA, Wang P, Gomaa MR, et al. Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013. Euro Surveillance: Bulletin European Sur Les Maladies Transmissibles = Eur Commun Dis Bull. 2013;18(36):pii=20574.
  • Zhao G, Du L, Ma C, et al. A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV. Virol J. 2013;10:266.
  • Du L, Kou Z, Ma C, et al. A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines. Plos One. 2013;8(12):e81587.
  • Xia S, Liu Q, Wang Q, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res. 2014 Dec 19;194:200–210.
  • He Y, Zhou Y, Liu S, et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun. 2004 Nov 12;324(2):773–781.
  • Sui J, Li W, Murakami A, et al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2536–2541.
  • Weingartl H, Czub M, Czub S, et al. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol. 2004 Nov;78(22):12672–12676.
  • Czub M, Weingartl H, Czub S, et al. Evaluation of modified vaccinia virus Ankara-based recombinant SARS vaccine in ferrets. Vaccine. 2005 Mar 18;23(17–18):2273–2279.
  • Dimitrov DS, Xiao X Soluble fragments of the SARS-CoV spike glycoprotein. WO2005010034. 2005.
  • Du L, Zhao G, Kou Z, et al. Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development. J Virol. 2013 Sep;87(17):9939–9942.
  • Mou H, Raj VS, Van Kuppeveld FJ, et al. The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. J Virol. 2013 Aug;87(16):9379–9383.
  • Zhang MY, Wang Y, Mankowski MK, et al. Cross-reactive HIV-1-neutralizing activity of serum IgG from a rabbit immunized with gp41 fused to IgG1 Fc: possible role of the prolonged half-life of the immunogen. Vaccine. 2009 Feb 5;27(6):857–863.
  • Li Z, Palaniyandi S, Zeng R, et al. Transfer of IgG in the female genital tract by MHC class I-related neonatal Fc receptor (FcRn) confers protective immunity to vaginal infection. Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4388–4393.
  • Ma C, Li Y, Wang L, et al. Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: implication for designing novel mucosal MERS vaccines. Vaccine. 2014 Apr 11;32(18):2100–2108.
  • Lan J, Deng Y, Chen H, et al. Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen. Plos One. 2014;9(11):e112602.
  • Zhang N, Channappanavar R, Ma C, et al. Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus. Cell Mol Immunol. 2016 Mar;13(2):180–190.
  • Tang XC, Marasco WA. Human neutralizing antibodies against MERS coronavirus: implications for future immunotherapy. Immunotherapy. 2015;7(6):591–594.
  • Tang J, Zhang N, Tao X, et al. Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus. Hum Vaccin Immunother. 2015;11(5):1244–1250.
  • Mortola E, Roy P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 2004 Oct 8;576(1–2):174–178.
  • Vilalta A, Evans TG, Quong MW, et al., inventors; Severe acute respiratory syndrome DNA vaccine compositions and methods of use. EP2184067. 2004.
  • Herold J, inventor. SARS-coronavirus virus-like particles and methods of use patent. WO2005035556. 2005.
  • Lokugamage KG, Yoshikawa-Iwata N, Ito N, et al. Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV. Vaccine. 2008 Feb 6;26(6):797–808.
  • Liu YV, Massare MJ, Barnard DL, et al. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV. Vaccine. 2011 Sep 2;29(38):6606–6613.
  • Smith G, Pushko P. Avian influenza chimeric VLPS. EP2540312. 2013.
  • Smith G, Liu Y, Massare M Immunogenic Middle East respiratory syndrome coronavirus (MERS-CoV) compositions and methods. WO2015042373. 2015.
  • Li J, Ulitzky L, Silberstein E, et al. Immunogenicity and protection efficacy of monomeric and trimeric recombinant SARS coronavirus spike protein subunit vaccine candidates. Viral Immunol. 2013 Apr;26(2):126–132.
  • Coleman CM, Liu YV, Mu H, et al. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine. 2014 May 30;32(26):3169–3174.
  • Arnberg N. Adenovirus receptors: implications for targeting of viral vectors. Trends Pharmacol Sci. 2012 Aug;33(8):442–448.
  • Ura T, Okuda K, Shimada M. Developments in viral vector-based vaccines. Vaccines. 2014;2(3):624–641.
  • Huang W, Zeng Y, Wang J, et al., inventors; SARS virus vaccine with adenovirus carrier and preparation method thereof and use of SARS virus S gene for preparation of vaccine. US2008267992. 2008.
  • Kim E, Okada K, Kenniston T, et al. Immunogenicity of an adenoviral-based Middle East respiratory syndrome coronavirus vaccine in BALB/c mice. Vaccine. 2014 Oct 14;32(45):5975–5982.
  • Lemiale F, Kong WP, Akyurek LM, et al. Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system. J Virol. 2003 Sep;77(18):10078–10087.
  • Guo X, Deng Y, Chen H, et al. Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus. Immunology. 2015 Aug;145(4):476–484.
  • Lu ZZ, Zou XH, Dong LX, et al. Novel recombinant adenovirus type 41 vector and its biological properties. J Gene Med. 2009 Feb;11(2):128–138.
  • Sutter G, Wyatt LS, Foley PL, et al. A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine. 1994 Aug;12(11):1032–1040.
  • Delaloye J, Roger T, Steiner-Tardivel QG, et al. Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. Plos Pathog. 2009 Jun;5(6):e1000480.
  • Lehmann MH, Kastenmuller W, Kandemir JD, et al. Modified vaccinia virus Ankara triggers chemotaxis of monocytes and early respiratory immigration of leukocytes by induction of CCL2 expression. J Virol. 2009 Mar;83(6):2540–2552.
  • Song F, Fux R, Provacia LB, et al. Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies. J Virol. 2013 Nov;87(21):11950–11954.
  • Volz A, Kupke A, Song F, et al. Protective efficacy of recombinant modified vaccinia virus Ankara delivering Middle East respiratory syndrome coronavirus spike glycoprotein. J Virol. 2015 Aug;89(16):8651–8656.
  • Qin C, Wei Q, Gao HTX, et al., inventors; A recombinant SARS-CoV vaccine comprising attenuated vaccinia virus carriers. WO2006079290. 2006.
  • Chen Z, Zhang L, Qin C, et al. Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J Virol. 2005 Mar;79(5):2678–2688.
  • Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 2006 Feb;6(2):148–158.
  • Fett C, DeDiego ML, Regla-Nava JA, et al. Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein. J Virol. 2013 Jun;87(12):6551–6559.
  • Girard MP, Cherian T, Pervikov Y, et al. A review of vaccine research and development: human acute respiratory infections. Vaccine. 2005 Dec 30;23(50):5708–5724.
  • Almazan F, DeDiego ML, Sola I, et al. Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate. Mbio. 2013;4(5):e00650–13.
  • DeDiego ML, Alvarez E, Almazan F, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol. 2007 Feb;81(4):1701–1713.
  • Ortego J, Ceriani JE, Patino C, et al. Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway. Virology. 2007 Nov 25;368(2):296–308.
  • Ortego J, Escors D, Laude H, et al. Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome. J Virol. 2002 Nov;76(22):11518–11529.
  • Enjuanes SL, Lopez De Diego M, Alvarez GE, et al., inventors; Attenuated SARS and use as a vaccine patent. WO2006136448. 2006.
  • Lamirande EW, DeDiego ML, Roberts A, et al. A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in golden Syrian hamsters. J Virol. 2008 Aug;82(15):7721–7724.
  • Shi J, Zhang J, Li S, et al. Epitope-based vaccine target screening against highly pathogenic MERS-CoV: an in silico approach applied to emerging infectious diseases. Plos One. 2015;10(12):e0144475.
  • Enjuanes SL, Almazan F, inventors; Vaccine against severe acute respiratory syndrome causing coronavirus (SARS-CoV) patent. WO2006024543. 2006.
  • Gupta V, Tabiin TM, Sun K, et al. SARS coronavirus nucleocapsid immunodominant T-cell epitope cluster is common to both exogenous recombinant and endogenous DNA-encoded immunogens. Virology. 2006 Mar 30;347(1):127–139.
  • Zhao P, Cao J, Zhao LJ, et al. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine. Virology. 2005 Jan 5;331(1):128–135.
  • Zhang N, Tang J, Lu L, et al. Receptor-binding domain-based subunit vaccines against MERS-CoV. Virus Res. 2015 Apr;202:151–159.
  • Li W, Wong SK, Li F, et al. Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J Virol. 2006 May;80(9):4211–4219.
  • Tao X, Garron T, Agrawal AS, et al. Characterization and demonstration of the value of a lethal mouse model of Middle East respiratory syndrome coronavirus infection and disease. J Virol. 2015 Oct;90(1):57–67.
  • Zhao J, Li K, Wohlford-Lenane C, et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci USA. 2014 Apr;111(13):4970–4975.
  • Lan J, Yao Y, Deng Y, et al. Recombinant receptor binding domain protein induces partial protective immunity in rhesus macaques against Middle East respiratory syndrome coronavirus challenge. EBioMed. 2015 Oct;2(10):1438–1446.
  • Yao Y, Bao L, Deng W, et al. An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus. J Infect Dis. 2014 Jan;209(2):236–242.
  • Falzarano D, De Wit E, Rasmussen AL, et al. Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat Med. 2013 Oct;19(10):1313–1317.
  • Van Den Brand JM, Smits SL, Haagmans BL. Pathogenesis of Middle East respiratory syndrome coronavirus. J Pathol. 2015 Jan;235(2):175–184.
  • Falzarano D, De Wit E, Feldmann F, et al. Infection with MERS-CoV causes lethal pneumonia in the common marmoset. Plos Pathog. 2014 Aug;10(8):e1004250.
  • Excler JL, Delvecchio CJ, Wiley RE, et al. Toward developing a preventive MERS-CoV vaccine—report from a workshop organized by the Saudi Arabia Ministry of Health and the International Vaccine Institute, Riyadh, Saudi Arabia, November 14–15, 2015. Emerg Infect Dis. 2016 Aug;22(8):e1–e7.
  • Woo PC, Lau SK, Tsoi HW, et al. SARS coronavirus spike polypeptide DNA vaccine priming with recombinant spike polypeptide from Escherichia coli as booster induces high titer of neutralizing antibody against SARS coronavirus. Vaccine. 2005 Oct 10;23(42):4959–4968.
  • Chunling M, Kun Y, Jian X, et al. Enhanced induction of SARS-CoV nucleocapsid protein-specific immune response using DNA vaccination followed by adenovirus boosting in BALB/c mice. Intervirology. 2006;49(5):307–318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.