489
Views
16
CrossRef citations to date
0
Altmetric
Review

Tryptase inhibitors: a patent review

, , , &
Pages 919-928 | Received 10 Jan 2017, Accepted 19 Apr 2017, Published online: 03 May 2017

References

  • Prieto-Garcia A, Castells MC, Hansbro PM, et al. Mast cell-restricted tetramer-forming tryptases and their beneficial roles in hemostasis and blood coagulation. Immunol Allergy Clin North Am. 2014;34:263–281. Epub 2014/04/22.
  • Buckley M, Walls AF. Identification of mast cells and mast cell subpopulations. Methods Mol Med. 2008;138:285–297. Epub 2008/07/10
  • Theoharides TC, Alysandratos KD, Angelidou A, et al. Mast cells and inflammation. Biochim Biophys Acta. 2012;1822:21–33. Epub 2010/12/28
  • Petra AI, Panagiotidou S, Stewart JM, et al. Spectrum of mast cell activation disorders. Expert Rev Clin Immunol. 2014;10:729–739. Epub 2014/05/03.
  • Afrin LB, Pohlau D, Raithel M, et al. Mast cell activation disease: an underappreciated cause of neurologic and psychiatric symptoms and diseases. Brain Behav Immun. 2015;50:314–321. Epub 2015/07/15.
  • Sismanopoulos N, Delivanis DA, Alysandratos KD, et al. Mast cells in allergic and inflammatory diseases. Curr Pharm Des. 2012;18:2261–2277. Epub 2012/03/07.
  • Nuttall PA, Paesen GC Tryptase inhibitor proteins derived from blood-feeding anthropod ectoparasites.US6987168. 2006.
  • Andrew L, Frendscho MH Avian tryptase polyclonal antibody and purification method for use in human tryptase immunoassay.US5744319. 1998.
  • Kankkunen JP, Harvima IT, Naukkarinen A. Quantitative analysis of tryptase and chymase containing mast cells in benign and malignant breast lesions. Int J Cancer Oncol. 1997;72:385–388. Epub 1997/07/29.
  • Theoharides TC, Bondy PK, Tsakalos ND, et al. Differential release of serotonin and histamine from mast cells. Nature. 1982;297:229–231. Epub 1982/05/20.
  • Theoharides TC, Cochrane DE. Critical role of mast cells in inflammatory diseases and the effect of acute stress. J Neuroimmunol. 2004;146:1–12. Epub 2003/12/31.
  • Picard M, Giavina-Bianchi P, Mezzano V, et al. Expanding spectrum of mast cell activation disorders: monoclonal and idiopathic mast cell activation syndromes. Clin Ther. 2013;35:548–562. Epub 2013/05/07.
  • Frenzel L, Hermine O. Mast cells and inflammation. Joint Bone Spine. 2013;80:141–145. Epub 2012/11/03
  • Martin T Tryptase inhibitor.US7060716. 2006.
  • Kolmar H, Sommerhoff C, Wentzel A Use of microproteins as tryptase inhibitors.US8278262. 2012.
  • Pereira PJ, Bergner A, Macedo-Ribeiro S, et al. Human beta-tryptase is a ring-like tetramer with active sites facing a central pore. Nature. 1998;392:306–311. Epub 1998/04/01.
  • Scott R, David W Tryptase-like polypeptide ztryp1.US6514741. 2003.
  • Caughey GH. New developments in the genetics and activation of mast cell proteases. Mol Immunol. 2002;38:1353–1357. Epub 2002/09/10.
  • Fiorucci L, Ascoli F. Mast cell tryptase, a still enigmatic enzyme. Cmls. 2004;61:1278–1295. Epub 2004/06/02.
  • Hanna WL, Zhang X, Turbov J, et al. Rapid purification of cationic granule proteases: application to human granzymes. Protein Expr Purif. 1993;4:398–404. Epub 1993/10/01.
  • Schwartz LB. Tryptase, a mediator of human mast cells. J Allergy Clin Immunol. 1990;86:594–598. Epub 1990/10/01
  • Schwartz LB, Sakai K, Bradford TR, et al. The alpha form of human tryptase is the predominant type present in blood at baseline in normal subjects and is elevated in those with systemic mastocytosis. J Clin Invest. 1995;96:2702–2710. Epub 1995/12/01
  • Bar T, Martin T, Stadlwieser J, et al. Tryptase inhibitor.US6489327. 2002.
  • Zhang J, Shi GP. Mast cells and metabolic syndrome. Biochim Biophys Acta. 2012;1822:14–20. Epub 2010/12/28
  • Fritz H, Sommerhoff C Tryptase inhibitor.US5972698. 1999.
  • Mark A, Andrew L, Frendscho MH Enzymatically-active recombinant human–tryptase and method of making same.US6274366. 2001.
  • Fukuoka Y, Schwartz LB. Active monomers of human beta-tryptase have expanded substrate specificities. Int Immunopharmacol. 2007;7:1900–1908. Epub 2007/11/28.
  • Kido H, Nakai H Tryptase inhibitor and novel guanidine derivatives.US6388122. 2002.
  • Le QT, Gomez G, Zhao W, et al. Processing of human protryptase in mast cells involves cathepsins L, B, and C. J Immunol. 2011;187:1912–1918. Epub 2011/07/12.
  • Le QT, Min HK, Xia HZ, et al. Promiscuous processing of human alphabeta-protryptases by cathepsins L, B, and C. J Immunol. 2011;186:7136–7143. Epub 2011/05/13.
  • Martin T Tryptase inhibitors.US6815557. 2004.
  • Sommerhoff CP, Bode W, Matschiner G, et al. The human mast cell tryptase tetramer: a fascinating riddle solved by structure. Biochim Biophys Acta. 2000;1477:75–89. Epub 2000/03/10.
  • Liang G, Aldous S, Merriman G, et al. Structure-based library design and the discovery of a potent and selective mast cell beta-tryptase inhibitor as an oral therapeutic agent. Bioorg Med Chem Lett. 2012;22:1049–1054. Epub 2011/12/24.
  • Fukuoka Y, Schwartz LB. The B12 anti-tryptase monoclonal antibody disrupts the tetrameric structure of heparin-stabilized beta-tryptase to form monomers that are inactive at neutral pH and active at acidic pH. J Immunol. 2006;176:3165–3172. Epub 2006/02/24.
  • Ma PW, Knipple DC, Roelofs WL. Structural organization of the Helicoverpa zea gene encoding the precursor protein for pheromone biosynthesis-activating neuropeptide and other neuropeptides. Proc Natl Acad Sci U S A. 1994;91:6506–6510. Epub 1994/07/05.
  • Lan RS, Stewart GA, Henry PJ. Role of protease-activated receptors in airway function: a target for therapeutic intervention? Pharmacol Ther. 2002;95:239–257. Epub 2002/09/24.
  • Liu X, Wang J, Zhang H, et al. Induction of mast cell accumulation by tryptase via a protease activated receptor-2 and ICAM-1 dependent mechanism. Mediators Inflamm. 2016;2016:1–10. Epub 2016/07/06.
  • Andrew L, Frendscho MH, Jennifer L, et al. Tryptase substrates and assay for tryptase avtivity using same.US6797461. 2004.
  • Schmidlin F, Amadesi S, Vidil R, et al. Expression and function of proteinase-activated receptor 2 in human bronchial smooth muscle. Am J Respir Crit Care Med. 2001;164:1276–1281. Epub 2001/10/24.
  • Compton SJ, Renaux B, Wijesuriya SJ, et al. Glycosylation and the activation of proteinase-activated receptor 2 (PAR(2)) by human mast cell tryptase. Br J Pharmacol. 2001;134:705–718. Epub 2001/10/19.
  • Compton SJ, Sandhu S, Wijesuriya SJ, et al. Glycosylation of human proteinase-activated receptor-2 (hPAR2): role in cell surface expression and signalling. Biochem J. 2002;368:495–505. Epub 2002/08/13.
  • Blair RJ, Meng H, Marchese MJ, et al. Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. J Clin Invest. 1997;99:2691–2700. Epub 1997/06/01.
  • Akers IA, Parsons M, Hill MR, et al. Mast cell tryptase stimulates human lung fibroblast proliferation via protease-activated receptor-2. Am J Physiol Lung Cell Mol Physiol. 2000;278:L193–201. Epub 2000/01/25.
  • Schechter NM, Brass LF, Lavker RM, et al. Reaction of mast cell proteases tryptase and chymase with protease activated receptors (PARs) on keratinocytes and fibroblasts. J Cell Physiol. 1998;176:365–373. Epub 1998/07/02.
  • Cairns JA, Walls AF. Mast cell tryptase is a mitogen for epithelial cells. Stimulation of IL-8 production and intercellular adhesion molecule-1 expression. J Immunol. 1996;156:275–283. Epub 1996/01/01.
  • Brown JK, Tyler CL, Jones CA, et al. Tryptase, the dominant secretory granular protein in human mast cells, is a potent mitogen for cultured dog tracheal smooth muscle cells. Am J Respir Cell Mol Biol. 1995;13:227–236. Epub 1995/08/01.
  • Ruoss SJ, Hartmann T, Caughey GH. Mast cell tryptase is a mitogen for cultured fibroblasts. J Clin Invest. 1991;88:493–499. Epub 1991/08/01.
  • Hernandez-Hernandez L, Sanz C, Garcia-Solaesa V, et al. Tryptase: genetic and functional considerations. Allergol Immunopathol (Madr). 2012;40:385–389. Epub 2012/07/10.
  • Compton SJ, Cairns JA, Holgate ST, et al. The role of mast cell tryptase in regulating endothelial cell proliferation, cytokine release, and adhesion molecule expression: tryptase induces expression of mRNA for IL-1 beta and IL-8 and stimulates the selective release of IL-8 from human umbilical vein endothelial cells. J Immunol. 1998;161:1939–1946. Epub 1998/08/26.
  • Anderskewitz R, Braun C, Hamm R, et al. Bis-basic compounds with tryptase–inhibitory activity.US6780863. 2004.
  • Rothemund S, Sonnichsen FD, Polte T. Therapeutic potential of the peptide leucine arginine as a new nonplant bowman-birk-like serine protease inhibitor. J Med Chem. 2013;56:6732–6744. Epub 2013/08/31.
  • Hwang SD, Hyun YK, Moon SJ, et al. Nafamostat mesilate for anticoagulation in continuous renal replacement therapy. Int J Artif Organs. 2013;36:208–216. Epub 2013/02/14.
  • Anderskewitz R, Braun C, Briem H, et al. Aminocarbonyl-substituted benzimidazoles having tryptase-inhibitory activity.US6512000. 2003.
  • Katz BA, Clark JM, Finer-Moore JS, et al. Design of potent selective zinc-mediated serine protease inhibitors. Nature. 1998;391:608–612. Epub 1998/02/19.
  • Nigel W, Carlos U Ileus treatment method.US5958407. 1999.
  • Michael J, Bruce E, Stephen C Peptidyl heterocyclic ketones useful as tryptase inhibitors.US6469036. 2002.
  • Yu W, Dener JM, Dickman DA, et al. Identification of metabolites of the tryptase inhibitor CRA-9249: observation of a metabolite derived from an unexpected hydroxylation pathway. Bioorg Med Chem Lett. 2006;16:4053–4058. Epub 2006/05/23.
  • Iruela-Arispe ML, Dvorak HF. Angiogenesis: a dynamic balance of stimulators and inhibitors. Thromb Haemost. 1997;78:672–677. Epub 1997/07/01.
  • Ribatti D. Genetic and epigenetic mechanisms in the early development of the vascular system. J Anat. 2006;208:139–152. Epub 2006/01/31.
  • Ribatti D. Mast cells as therapeutic target in cancer. Eur J Pharmacol. 2016;778:152–157. Epub 2015/04/29.
  • He SH, Xie H, He YS. Induction of tryptase and histamine release from human colon mast cells by IgE dependent or independent mechanisms. World J Gastroenterol. 2004;10:319–322. Epub 2004/02/05.
  • Caughey GH, Leidig F, Viro NF, et al. Substance P and vasoactive intestinal peptide degradation by mast cell tryptase and chymase. J Pharmacol Exp Ther. 1988;244:133–137. Epub 1988/01/01.
  • Walls AF, Brain SD, Desai A, et al. Human mast cell tryptase attenuates the vasodilator activity of calcitonin gene-related peptide. Biochem Pharmacol. 1992;43:1243–1248. Epub 1992/03/17.
  • Gruber BL, Marchese MJ, Suzuki K, et al. Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation. J Clin Invest. 1989;84:1657–1662. Epub 1989/11/01.
  • Yamamoto K, Kumagai N, Fukuda K, et al. Activation of corneal fibroblast-derived matrix metalloproteinase-2 by tryptase. Curr Eye Res. 2006;31:313–317. Epub 2006/04/11.
  • Stack MS, Johnson DA. Human mast cell tryptase activates single-chain urinary-type plasminogen activator (pro-urokinase). J Biol Chem. 1994;269:9416–9419. Epub 1994/04/01.
  • Wagsater D, Zhu C, Bjorkegren J, et al. MMP-2 and MMP-9 are prominent matrix metalloproteinases during atherosclerosis development in the Ldlr(-/-)Apob(100/100) mouse. Int J Mol Med. 2011;28:247–253. Epub 2011/05/14.
  • Kuzuya M, Nakamura K, Sasaki T, et al. Effect of MMP-2 deficiency on atherosclerotic lesion formation in apoE-deficient mice. Arterioscler Thromb Vasc Biol. 2006;26:1120–1125. Epub 2006/03/25.
  • Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–364. Epub 1996/08/09.
  • Ribatti D, Crivellato E. Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta. 2012;1822:2–8. Epub 2010/12/07.
  • Ammendola M, Patruno R, Sacco R, et al. Mast cells positive to tryptase and tumour-associated macrophages correlate with angiogenesis in locally advanced colorectal cancer patients undergone to surgery. Expert Opin Ther Targets. 2016;20:533–540. Epub 2016/02/26.
  • Malfettone A, Silvestris N, Saponaro C, et al. High density of tryptase-positive mast cells in human colorectal cancer: a poor prognostic factor related to protease-activated receptor 2 expression. J Cell Mol Med. 2013;17:1025–1037. Epub 2013/09/03.
  • Ammendola M, Leporini C, Marech I, et al. Targeting mast cells tryptase in tumor microenvironment: a potential antiangiogenetic strategy. Biomed Res Int. 2014;2014:1–16. Epub 2014/10/09.
  • de Souza Junior DA, Santana AC, Da Silva EZ, et al. The role of mast cell specific chymases and tryptases in tumor angiogenesis. Biomed Res Int. 2015;2015:1–13. Epub 2015/07/07.
  • Schwartz LB, Bradford TR, Littman BH, et al. The fibrinogenolytic activity of purified tryptase from human lung mast cells. J Immunol. 1985;135:2762–2767. Epub 1985/10/01.
  • Caughey GH, Raymond WW, Bacci E, et al. Bis(5-amidino-2-benzimidazolyl)methane and related amidines are potent, reversible inhibitors of mast cell tryptases. J Pharmacol Exp Ther. 1993;264:676–682. Epub 1993/02/01.
  • Clark JM, Abraham WM, Fishman CE, et al. Tryptase inhibitors block allergen-induced airway and inflammatory responses in allergic sheep. Am J Respir Crit Care Med. 1995;152:2076–2083. Epub 1995/12/01.
  • Hopkins CR, Czekaj M, Kaye SS, et al. Design, synthesis, and biological activity of potent and selective inhibitors of mast cell tryptase. Bioorg Med Chem Lett. 2005;15:2734–2737. Epub 2005/05/25.
  • Rice KD, Tanaka RD, Katz BA, et al. Inhibitors of tryptase for the treatment of mast cell-mediated diseases. Curr Pharm Des. 1998;4:381–396. Epub 1999/04/10.
  • Burgess LE, Newhouse BJ, Ibrahim P, et al. Potent selective nonpeptidic inhibitors of human lung tryptase. Proc Natl Acad Sci U S A. 1999;96:8348–8352. Epub 1999/07/21.
  • Krishna MT, Chauhan A, Little L, et al. Inhibition of mast cell tryptase by inhaled APC 366 attenuates allergen-induced late-phase airway obstruction in asthma. J Allergy Clin Immunol. 2001;107:1039–1045. Epub 2001/06/09.
  • Stubbs MT, Morenweiser R, Sturzebecher J, et al. The three-dimensional structure of recombinant leech-derived tryptase inhibitor in complex with trypsin. Implications for the structure of human mast cell tryptase and its inhibition. J Biol Chem. 1997;272:19931–19937. Epub 1997/08/08.
  • Liang G, Choi-Sledeski YM, Shum P, et al. A beta-tryptase inhibitor with a tropanylamide scaffold to improve in vitro stability and to lower hERG channel binding affinity. Bioorg Med Chem Lett. 2012;22:1606–1610. Epub 2012/01/24.
  • Laurence E, James P Sulfonamide bridging compounds that inhibit tryptase activity.US6221914. 2001.
  • Wright CD, Havill AM, Middleton SC, et al. Inhibition of allergen-induced pulmonary responses by the selective tryptase inhibitor 1,5-bis-[4-[(3-carbamimidoyl-benzenesulfonylamino)-methyl]-phenoxy]-pen tane (AMG-126737). Biochem Pharmacol. 1999;58:1989–1996. Epub 1999/12/11.
  • Burgess LR, J.P, inventorCpds. which inhibit tryptase activity patentWO 9924395.
  • Anderskewitz R, Braun C, Briem H, et al. Carboxamide-substituted benzimidazoles having tryptase –inhibiting activity.US6407130. 2002.
  • Sommerhoff CP, Sollner C, Mentele R, et al. Kazal-type inhibitor of human mast cell tryptase: isolation from the medical leech Hirudo medicinalis, characterization, and sequence analysis. Biol Chem Hoppe Seyler. 1994;375:685–694. Epub 1994/10/01.
  • Richard R, Joachim D, John H, et al. Use of bis-(5-amidino-2-benzimidazolyl)methane (BABIM) to treat arthritis.US4940723. 1990.
  • Richard R, Edward J, Joachim D Inhibition of respiratory syncytial virus-induced cell fusion by amidino compounds.US4619942. 1986.
  • Tidwell RR, Geratz JD, Clyde WA Jr., et al. Suppression of respiratory syncytial virus infection in cotton rats by bis(5-amidino-2-benzimidazolyl)methane. Antimicrob Agents Chemother. 1984;26:591–593. Epub 1984/10/01.
  • Geratz JD, Pryzwansky KB, Schwab JH, et al. Suppression of streptococcal cell wall-induced arthritis by a potent protease inhibitor, bis(5-amidino-2-benzimidazolyl)methane. Arthritis Rheum. 1988;31:1156–1164. Epub 1988/09/01.
  • Ewald M, Kranich R, Vollhardt K, et al. Ctystalline forms of 1,6-bis [3-(3-carboxymethylphenyl)-4-(2-α-D-mannopyranosyloxy)-phenyl] hexane.US8039601. 2011.
  • Oh SW, Pae CI, Lee DK, et al. Tryptase inhibition blocks airway inflammation in a mouse asthma model. J Immunol. 2002;168:1992–2000. Epub 2002/02/02.
  • Molinari JF, Scuri M, Moore WR, et al. Inhaled tryptase causes bronchoconstriction in sheep via histamine release. Am J Respir Crit Care Med. 1996;154:649–653. Epub 1996/09/01.
  • Costanzo MJ, Yabut SC, Almond HR Jr., et al. Potent, small-molecule inhibitors of human mast cell tryptase. Antiasthmatic action of a dipeptide-based transition-state analogue containing a benzothiazole ketone. J Med Chem. 2003;46:3865–3876. Epub 2003/08/22.
  • Costanzo MJ, Almond HR Jr., Hecker LR, et al. In-depth study of tripeptide-based alpha-ketoheterocycles as inhibitors of thrombin. Effective utilization of the S1ʹ subsite and its implications to structure-based drug design. J Med Chem. 2005;48:1984–2008. Epub 2005/03/18.
  • Recacha R, Carson M, Costanzo MJ, et al. Structure of the RWJ-51084-bovine pancreatic beta-trypsin complex at 1.8 A. Acta Crystallogr D Biol Crystallogr. 1999;55:1785–1791. Epub 1999/10/26.
  • Sperandio D, Tai VW, Lohman J, et al. Novel, potent, selective, and orally bioavailable human betaII-tryptase inhibitors. Bioorg Med Chem Lett. 2006;16:4085–4089. Epub 2006/05/27.
  • Kenney BD, Breslav M, Chang R, et al. Methodology for the preparation of 2-argininylbenzothiazole. J Org Chem. 2007;72:9798–9801. Epub 2007/11/14.
  • Erin EM, Leaker BR, Zacharasiewicz A, et al. Effects of a reversible beta-tryptase and trypsin inhibitor (RWJ-58643) on nasal allergic responses. Clin Exp Allergy. 2006;36:458–464. Epub 2006/04/25.
  • Yeong P, Ning Y, Xu Y, et al. Tryptase promotes human monocyte-derived macrophage foam cell formation by suppressing LXRalpha activation. Biochim Biophys Acta. 2010;1801:567–576. Epub 2010/02/09.
  • Levell J, Astles P, Eastwood P, et al. Structure based design of 4-(3-aminomethylphenyl)piperidinyl-1-amides: novel, potent, selective, and orally bioavailable inhibitors of betaII tryptase. Bioorg Med Chem. 2005;13:2859–2872. Epub 2005/03/23.
  • Sylvin H, Dahlback M, van der Ploeg I, et al. The tryptase inhibitor APC-366 reduces the acute airway response to allergen in pigs sensitized to Ascaris suum. Clin Exp Allergy. 2002;32:967–971. Epub 2002/06/06.
  • Lu J, Chen B, Li S, et al. Tryptase inhibitor APC 366 prevents hepatic fibrosis by inhibiting collagen synthesis induced by tryptase/protease-activated receptor 2 interactions in hepatic stellate cells. Int Immunopharmacol. 2014;20:352–357. Epub 2014/04/17.
  • Michael J, Bruce E, Stephen C Peptidyl heterocyclic ketones useful as tryptase inhibitors.US7132418. 2006.
  • Bayes M, Rabasseda X, Prous JR. Gateways to clinical trials. Methods Find Exp Clin Pharmacol. 2003;25:387–408. Epub 2003/07/10.
  • Tremaine WJ, Brzezinski A, Katz JA, et al. Treatment of mildly to moderately active ulcerative colitis with a tryptase inhibitor (APC 2059): an open-label pilot study. Aliment Pharmacol Ther. 2002;16:407–413. Epub 2002/03/06.
  • Gangloff AR, Kuo EY-L, Dener JM, et al. Compsns and methods for treating mast-cell inflammatory condition.US6022969.
  • Ishizaki M, Tanaka H, Kajiwara D, et al. Nafamostat mesilate, a potent serine protease inhibitor, inhibits airway eosinophilic inflammation and airway epithelial remodeling in a murine model of allergic asthma. J Pharmacol Sci. 2008;108:355–363. Epub 2008/11/15.
  • Sendo T, Itoh Y, Goromaru T, et al. A potent tryptase inhibitor nafamostat mesilate dramatically suppressed pulmonary dysfunction induced in rats by a radiographic contrast medium. Br J Pharmacol. 2003;138:959–967. Epub 2003/03/19.
  • Holzhausen M, Balejo RD, Lara GM, et al. Nafamostat mesilate, a potent tryptase inhibitor, modulates periodontitis in rats. Clin Oral Investig. 2011;15:967–973. Epub 2010/09/08.
  • Fujii S, Okutome T, Nakayama T, et al. Amidine compound.JP82179146.
  • Sutton JC, Bolton SA, Hartl KS, et al. Synthesis and SAR of 4-carboxy-2-azetidinone mechanism-based tryptase inhibitors. Bioorg Med Chem Lett. 2002;12:3229–3233. Epub 2002/10/10.
  • Gregory S, William A, Treuner U, et al. Beta lactam compounds and their use as inhibitors of tryptase.US6335324. 2002.
  • Sutton JC, Bolton SA, Davis ME, et al. Solid-phase synthesis and SAR of 4-carboxy-2-azetidinone mechanism-based tryptase inhibitors. Bioorg Med Chem Lett. 2004;14:2233–2239. Epub 2004/04/15.
  • Qian X, Zheng B, Burke B, et al. A stereoselective synthesis of BMS-262084, an azetidinone-based tryptase inhibitor. J Org Chem. 2002;67:3595–3600. Epub 2002/05/25.
  • Kamath AV, Morrison RA, Harper TW, et al. Multiple pathways are involved in the oral absorption of BMS-262084, a tryptase inhibitor, in rats: role of paracellular transport, binding to trypsin, and P-glycoprotein efflux. J Pharm Sci. 2005;94:1115–1123. Epub 2005/03/29.
  • Treuner U, Kronenthal DR, Xu Z, et al. Amidino and guanidino azetidinone tryptase inhibitors.WO9967215.
  • Costanzo MJ, Yabut SC, Zhang HC, et al. Potent, nonpeptide inhibitors of human mast cell tryptase. Synthesis and biological evaluation of novel spirocyclic piperidine amide derivatives. Bioorg Med Chem Lett. 2008;18:2114–2121. Epub 2008/02/15.
  • Tanaka AS, Silva MM, Torquato RJ, et al. Functional phage display of leech-derived tryptase inhibitor (LDTI): construction of a library and selection of thrombin inhibitors. FEBS Lett. 1999;458:11–16. Epub 1999/10/16.
  • Pohlig G, Fendrich G, Knecht R, et al. Purification, characterization and biological evaluation of recombinant leech-derived tryptase inhibitor (rLDTI) expressed at high level in the yeast Saccharomyces cerevisiae. Eur J Biochem. 1996;241:619–626. Epub 1996/10/15.
  • Mann DM, Romm E, Migliorini M. Delineation of the glycosaminoglycan-binding site in the human inflammatory response protein lactoferrin. J Biol Chem. 1994;269:23661–23667. Epub 1994/09/23.
  • Elrod KC, Moore WR, Abraham WM, et al. Lactoferrin, a potent tryptase inhibitor, abolishes late-phase airway responses in allergic sheep. Am J Respir Crit Care Med. 1997;156:375–381. Epub 1997/08/01.
  • Linder A, Venge P, Deuschl H. Eosinophil cationic protein and myeloperoxidase in nasal secretion as markers of inflammation in allergic rhinitis. Allergy. 1987;42:583–590. Epub 1987/11/01.
  • Cregar L, Elrod KC, Putnam D, et al. Neutrophil myeloperoxidase is a potent and selective inhibitor of mast cell tryptase. Arch Biochem Biophys. 1999;366:125–130. Epub 1999/05/21.
  • Salmon AL, Cross LJ, Irvine AE, et al. Peptide leucine arginine, a potent immunomodulatory peptide isolated and structurally characterized from the skin of the Northern Leopard frog, Rana pipiens. J Biol Chem. 2001;276:10145–10152. Epub 2000/12/12.
  • Polte T, Fuchs L, Behrendt AK, et al. Different role of CD30 in the development of acute and chronic airway inflammation in a murine asthma model. Eur J Immunol. 2009;39:1736–1742. Epub 2009/06/23.
  • Ono S, Kuwahara S, Takeuchi M, et al. Syntheses and evaluation of amidinobenzofuran derivatives as tryptase inhibitors. Bioorg Med Chem Lett. 1999;9:3285–3290. Epub 1999/12/28.
  • Nagata T, Yoshino T, Haginoya N, et al. Cycloalkanediamine derivatives as novel blood coagulation factor Xa inhibitors. Bioorg Med Chem Lett. 2007;17:4683–4688. Epub 2007/06/09.
  • Liang G, Choi-Sledeski YM, Poli G, et al. A conformationally constrained inhibitor with an enhanced potency for beta-tryptase and stability against semicarbazide-sensitive amine oxidase (SSAO). Bioorg Med Chem Lett. 2010;20:6721–6724. Epub 2010/09/22.
  • Molinari JF, Moore WR, Clark J, et al. Role of tryptase in immediate cutaneous responses in allergic sheep. J Appl Physiol (1985). 1995;79:1966–1970. Epub 1995/12/01.
  • Caughey GH. Mast cell proteases as pharmacological targets. Eur J Pharmacol. 2016;778:44–55. Epub 2015/05/11.
  • Dener JM, Rice KD, Newcomb WS, et al. Dibasic inhibitors of human mast cell tryptase. Part 3: identification of a series of potent and selective inhibitors containing the benzamidine functionality. Bioorg Med Chem Lett. 2001;11:1629–1633. Epub 2001/06/27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.