1,055
Views
39
CrossRef citations to date
0
Altmetric
Review

Autotaxin inhibitors: a patent review (2012-2016)

, , , &
Pages 815-829 | Received 23 Nov 2016, Accepted 23 Apr 2017, Published online: 09 May 2017

References

  • Stefan C, Jansen S, Bollen M. NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem Sci. 2005;30:542–550.
  • Tokumura A, Majima E, Kariya Y, et al. Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as sutotaxin, a multifunctional phosphodiesterase. J Biol Chem. 2002;277:39436–39442.
  • Umezu-Goto M, Kishi Y, Taira A, et al. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol. 2002;158:227–233.
  • Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer. 2003;3:582–591.
  • Okudaira S, Yukiura H, Aoki J. Biological roles of lysophosphatidic acid signaling through its production by autotaxin. Biochimie. 2010;92:698–706.
  • Yung YC, Stoddard NC, Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res. 2014;55:1192–1214.
  • Stoddard NC, Chun J. Promising pharmacological directions in the world of lysophosphatidic acid signaling. Biomol Ther (Seoul). 2015;23:1–11.
  • Sevastou I, Kaffe E, Mouratis MA, et al. Lysoglycerophospholipids in chronic inflammatory disorders: the PLA2/LPC and ATX/LPA axes. Biochim Biophys Acta. 2013;1831:42–60.
  • Benesch MGK, Ko YM, McMullen TPW, et al. Autotaxin in the crosshairs: taking aim at cancer and other inflammatory conditions. FEBS Lett. 2014;588:2712–2727.
  • Perrakis A, Moolenaar WH. Autotaxin: structure-function and signaling. J Lipid Res. 2014;55:1010–1018.
  • Barbayianni E, Kaffe E, Aidinis V, et al. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res. 2015;58:76–96.
  • Benesch MG, Tang X, Venkatraman G, et al. Recent advances in targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo. J Biomed Res. 2016;30:272–284.
  • Federico L, Jeong KJ, Vellano CP, et al. Autotaxin, a lysophospholipase D with pleomorphic effects in oncogenesis and cancer progression. J Lipid Res. 2016;57:25–35.
  • Parrill AL, Baker DL. Autotaxin inhibitors: a perspective on initial medicinal chemistry efforts. Expert Opin Ther Pat. 2010;20:1619–1625.
  • Albers HMHG, Ovaa H. Chemical evolution of autotaxin inhibitors. Chem Rev. 2012;112:2593–2603.
  • Barbayianni E, Magrioti V, Moutevelis-Minakakis P, et al. Autotaxin inhibitors: a patent review. Expert Opin Ther Pat. 2013;23:1123–1132.
  • Castagna D, Budd DC, Macdonald SJF, et al. Development of autotaxin inhibitors: an overview of the patent and primary literature. J Med Chem. 2016;59:5604–5621.
  • Stracke ML, Krutzsch HC, Unsworth EJ, et al. Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem. 1992;267:2524–2529.
  • Hausmann J, Kamtekar S, Christodoulou E, et al. Structural basis for substrate discrimination and integrin binding by autotaxin. Nat Struct Mol Biol. 2011;18:198–204.
  • Nishimasu H, Okudaira S, Hama K, et al. Crystal structure of autotaxin and insight into GPCR activation by lipid mediators. Nat Struct Mol Biol. 2011;18:205–212.
  • Jansen S, Callewaert N, Dewerte I, et al. An essential oligomannosidic glycan chain in the catalytic domain of autotaxin, a secreted lysophospholipase-D. J Biol Chem. 2007;282:11084–11091.
  • Jansen S, Andries M, Derua R, et al. Domain interplay mediated by an essential disulfide linkage is critical for the activity and secretion of the metastasis-promoting enzyme autotaxin. J Biol Chem. 2009;284:14296–14302.
  • Gijsbers R, Aoki J, Arai H, et al. The hydrolysis of lysophospholipids and nucleotides by autotaxin (NPP2) involves a single catalytic site. FEBS Lett. 2003;538:60–64.
  • Fells JI, Lee SC, Fujiwara Y, et al. Hits of a high-throughput screen identify the hydrophobic pocket of autotaxin/lysophospholipase D as an inhibitory surface. Mol Pharmacol. 2013;84:415–424.
  • Hausmann J, Perrakis A, Moolenaar WH. Structure–function relationships of autotaxin, a secreted lysophospholipase D. Adv Biol regul. 2013;53:112–117.
  • Yuelling LM, Fuss B. Autotaxin (ATX): a multi-functional and multi-modular protein possessing enzymatic lysoPLD activity and matricellular properties. Biochim Biophys Acta. 2008;1781:525–530.
  • Giganti A, Rodriguez M, Fould B, et al. Murine and human autotaxin α, β, and γ isoforms: gene organization, tissue distribution, and biochemical characterization. J Biol Chem. 2008;283:7776–7789.
  • Hashimoto T, Okudaira S, Igarashi K, et al. Identification and biochemical characterization of a novel autotaxin isoform, ATXδ, with a four-amino acid deletion. J Biochem. 2012;151:89–97.
  • Clair T, Aoki J, Koh E, et al. Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate. Cancer Res. 2003;63:5446–5453.
  • Hait NC, Oskeritzian CA, Paugh SW, et al. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. BBA - Biomembranes. 2006;1758:2016–2026.
  • Tsuda S, Okudaira S, Moriya-Ito K, et al. Cyclic phosphatidic acid is produced by autotaxin in blood. J Biol Chem. 2006;281:26081–26088.
  • Aikawa S, Hashimoto T, Kano K, et al. Lysophosphatidic acid as a lipid mediator with multiple biological actions. J Biochem. 2015;157:81–89.
  • Tigyi G. Physiological responses to lysophosphatidic acid and related glycero-phospholipids. Prostaglandins Other Lipid Mediat. 2001;64:47–62.
  • Moolenaar WH, Van Meeteren LA, Giepmans BNG. The ins and outs of lysophosphatidic acid signaling. Bioessays. 2004;26:870–881.
  • Jesionowska A, Cecerska E, Dolegowska B. Methods for quantifying lysophosphatidic acid in body fluids: a review. Anal Biochem. 2014;453:38–43.
  • Contos JJ, Ishii I, Chun J. Lysophosphatidic acid receptors. Mol Pharmacol. 2000;58:1188–1196.
  • Contos JJ, Fukushima N, Weiner JA, et al. Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci USA. 2000;97:13384–13389.
  • Archbold JK, Martin JL, Sweet MJ. Towards selective lysophospholipid GPCR modulators. Trends Pharmacol Sci. 2014;35:219–226.
  • Hope JM, Wang FQ, Whyte JS, et al. LPA receptor 2 mediates LPA-induced endometrial cancer invasion. Gynecol Oncol. 2009;112:215–223.
  • Ohuchi H, Hamada A, Matsuda H, et al. Expression patterns of the lysophospholipid receptor genes during mouse early development. Dev Dyn. 2008;237:3280–3294.
  • Ye X, Hama K, Contos JJ, et al. LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature. 2005;435:104–108.
  • Noguchi K, Ishii S, Shimizu T. Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem. 2003;278:25600–25606.
  • Choi JW, Herr DR, Noguchi K, et al. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol. 2010;50:157–186.
  • Sumida H, Noguchi K, Kihara Y, et al. LPA4 regulates blood and lymphatic vessel formation during mouse embryogenesis. Blood. 2010;116:5060–5070.
  • Kotarsky K, Boketoft A, Bristulf J, et al. Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. J Pharmacol Exp Ther. 2006;318:619–628.
  • Lee CW, Rivera R, Gardell S, et al. GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem. 2006;281:23589–23597.
  • Pasternack SM, Von Kugelgen I, Aboud KA, et al. G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nat Genet. 2008;40:329–334.
  • Yanagida K, Masago K, Nakanishi H, et al. Identification and characterization of a novel lysophosphatidic acid receptor, p2y5/lpa6. J Biol Chem. 2009;284:17731–17741.
  • Aoki J, Inoue A, Okudaira S. Two pathways for lysophosphatidic acid production. BBA Mol Cell Biol Lipids. 2008;1781:513–518.
  • Sun Y, Zhang W, Evans JF, et al. Autotaxin, pruritus and primary biliary cholangitis (PBC). Autoimmun Rev. 2016;15:795–800.
  • Van Meeteren LA, Ruurs P, Stortelers C, et al. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol. 2006;26:5015–5022.
  • Tanaka M, Okudaira S, Kishi Y, et al. Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J Biol Chem. 2006;281:25822–25830.
  • Gierse J, Thorarensen A, Beltey K, et al. A novel autotaxin inhibitor reduces lysophosphatidic acid levels in plasma and the site of inflammation. J Pharmacol Exp Ther. 2010;334:310–317.
  • Albers HM, Dong A, Van Meeteren LA, et al. Boronic acid-based inhibitor of autotaxin reveals rapid turnover of LPA in the circulation. Proc Natl Acad Sci USA. 2010;107:7257–7262.
  • Ferry G, Moulharat N, Pradere JP, et al. S32826, a nanomolar inhibitor of autotaxin: discovery, synthesis and applications as a pharmacological tool. J Pharmacol Exp Ther. 2008;327:809–819.
  • Fotopoulou S, Oikonomou N, Grigorieva E, et al. ATX expression and LPA signalling are vital for the development of the nervous system. Dev Biol. 2010;339:451–464.
  • Ferry G, Tellier E, Try A, et al. Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation: up-regulated expression with adipocyte differentiation and obesity. J Biol Chem. 2003;278:18162–18169.
  • Sato K, Malchinkhuu E, Muraki T, et al. Identification of autotaxin as a neurite retraction-inducing factor of PC12 cells in cerebrospinal fluid and its possible sources. J Neurochem. 2005;92:904–914.
  • Tokumura A, Kume T, Fukuzawa K, et al. Peritoneal fluids from patients with certain gynecologic tumor contain elevated levels of bioactive lysophospholipase D activity. Life Sci. 2007;80:1641–1649.
  • Nochi H, Tomura H, Tobo M, et al. Stimulatory role of lysophosphatidic acid in cyclooxygenase-2 induction by synovial fluid of patients with rheumatoid arthritis in fibroblast-like synovial cells. J Immunol. 2008;181:5111–5119.
  • Oikonomou N, Mouratis MA, Tzouvelekis A, et al. Pulmonary autotaxin expression contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Cell Mol Biol. 2012;47:566–574.
  • Nikitopoulou I, Oikonomou N, Karouzakis E, et al. Autotaxin expression from synovial fibroblasts is essential for the pathogenesis of modeled arthritis. J Exp Med. 2012;209:925–933.
  • Kanda H, Newton R, Klein R, et al. Autotaxin, an ectoenzyme that produces lysophosphatidic acid, promotes the entry of lymphocytes into secondary lymphoid organs. Nat Immunol. 2008;9:415–423.
  • Fuss B, Baba H, Phan T, et al. Phosphodiesterase I, a novel adhesion molecule and/or cytokine involved in oligodendrocyte function. J Neurosci. 1997;17:9095–9103.
  • Moolenaar WH. Lysophospholipids in the limelight: autotaxin takes center stage. J Cell Biol. 2002;158:197–199.
  • Jansen S, Stefan C, Creemers JW, et al. Proteolytic maturation and activation of autotaxin (NPP2), a secreted metastasis-enhancing lysophospholipase D. J Cell Sci. 2005;118:3081–3089.
  • Koike S, Keino-Masu K, Ohto T, et al. The N-terminal hydrophobic sequence of autotaxin (ENPP2) functions as a signal peptide. Genes Cells. 2006;11:133–142.
  • Katsifa A, Kaffe E, Nikolaidou-Katsaridou N, et al. The bulk of autotaxin activity is dispensable for adult mouse life. Plos ONE. 2015;10:e0143083.
  • Lee SC, Fujiwara Y, Liu J, et al. Autotaxin, LPA receptors (1 and 5) exert disparate functions in tumor cells versus the host tissue microenvironment in melanoma invasion and metastasis. Mol Cancer Res. 2015;13:174–185.
  • Lee SC, Fujiwara Y, Tigyi GJ. Uncovering unique roles of LPA receptors in the tumor microenvironment. Receptors Clin Investig. 2015;2:e440.
  • Gotoh M, Fujiwara Y, Yue J, et al. Controlling cancer through the autotaxin-lysophosphatidic acid receptor axis. Biochem Soc Trans. 2012;40:31–36.
  • Rancoule C, Dusaulcy R, Treguer K, et al. Involvement of autotaxin/lysophosphatidic acid signaling in obesity and impaired glucose homeostasis. Biochimie. 2014;96:140–143.
  • Watanabe N, Ikeda H, Nakamura K, et al. Both plasma lysophosphatidic acid and serum autotaxin levels are increased in chronic hepatitis C. J Clin Gastroenterol. 2007;41:616–623.
  • Knowlden S, Georas SN. The autotaxin-LPA axis emerges as a novel regulator of lymphocyte homing and inflammation. J Immunol. 2014;192:851–857.
  • Orosa B, García S, Conde C. The autotaxin–lysophosphatidic acid pathway in pathogenesis of rheumatoid arthritis. Eur J Pharmacol. 2015;765:228–233.
  • Moolenaar WH, Perrakis A. Insights into autotaxin: how to produce and present a lipid mediator. Nat Rev Mol Cell Biol. 2011;12:674–679.
  • Teo K, Brunton VG. The role and therapeutic potential of the autotaxin-lysophosphatidate signalling axis in breast cancer. Biochem J. 2014;463:157–165.
  • Benesch MG, Tang X, Maeda T, et al. Inhibition of autotaxin delays breast tumor growth and lung metastasis in mice. FASEB J. 2014;28:2655–2666.
  • Brindley DN, Lin FT, Tigyi GJ. Role of the autotaxin–lysophosphatidate axis in cancer resistance to chemotherapy and radiotherapy. Biochim Biophys Acta. 2013;1831:74–85.
  • Merchant TE, Kasimos JN, De Graaf PW, et al. Phospholipid profiles of human colon cancer using 31P magnetic resonance spectroscopy. Int J Colorectal Dis. 1991;6:121–126.
  • Leblanc R, Peyruchaud O. New insights into the autotaxin/LPA axis in cancer development and metastasis. Exp Cell Res. 2015;333:183–189.
  • Zuckerman V, Sokolov E, Swet JH, et al. Expression and function of lysophosphatidic acid receptors (LPARs) 1 and 3 in human hepatic cancer progenitor cells. Oncotarget. 2016;7:2951–2967.
  • Liu S, Murph M, Panupinthu N, et al. ATX-LPA receptor axis in inflammation and cancer. Cell Cycle. 2009;8:3695–3701.
  • Samadi N, Bekele R, Capatos D, et al. Regulation of lysophosphatidate signaling by autotaxin and lipid phosphate phosphatases with respect to tumor progression, angiogenesis, metastasis and chemo-resistance. Biochimie. 2011;93:61–70.
  • Willier S, Butt E, Grunewald TG. Lysophosphatidic acid (LPA) signalling in cell migration and cancer invasion: a focussed review and analysis of LPA receptor gene expression on the basis of more than 1700 cancer microarrays. Biol Cell. 2013;105:317–333.
  • Seo EJ, Kwon YW, Jang IH, et al. Autotaxin regulates maintenance of ovarian cancer stem cells through lysophosphatidic acid-mediated autocrine mechanism. Stem Cells. 2016;34:551–564.
  • Gaetano CG, Samadi N, Tomsig JL, et al. Inhibition of autotaxin production or activity blocks lysophosphatidylcholine-induced migration of human breast cancer and melanoma cells. Mol Carcinog. 2009;48:801–809.
  • Ptaszynska MM, Pendrak ML, Stracke ML, et al. Autotaxin signaling via lysophosphatidic acid receptors contributes to vascular endothelial growth factor-induced endothelial cell migration. Mol Cancer Res. 2010;8:309–321.
  • Park SY, Jeong KJ, Panupinthu N, et al. Lysophosphatidic acid augments human hepatocellular carcinoma cell invasion through LPA1 receptor and MMP-9 expression. Oncogene. 2011;30:1351–1359.
  • Boucharaba A, Serre CM, Gres S, et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest. 2004;114:1714–1725.
  • David M, Wannecq E, Descotes F, et al. Cancer cell expression of autotaxin controls bone metastasis formation in mouse through lysophosphatidic acid-dependent activation of osteoclasts. PLOS ONE. 2010;5:e9741.
  • Leblanc R, Lee SC, David M, et al. Interaction of platelet-derived autotaxin with tumor integrin alphaVbeta3 controls metastasis of breast cancer cells to bone. Blood. 2014;124:3141–3150.
  • Hoelzinger DB, Mariani L, Weis J, et al. Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia. 2005;7:7–16.
  • King TE Jr, Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet. 2011;378:1949–1961.
  • Tager AM, LaCamera P, Shea BS, et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med. 2008;14:45–54.
  • Georas SN, Berdyshev E, Hubbard W, et al. Lysophosphatidic acid is detectable in human bronchoalveolar lavage fluids at baseline and increased after segmental allergen challenge. Clin Exp Allergy. 2007;37:311–322.
  • Park GY, Lee YG, Berdyshev E, et al. Autotaxin production of lysophosphatidic acid mediates allergic asthmatic inflammation. Am J Respir Crit Care Med. 2013;188:928–940.
  • Knowlden SA, Hillman SE, Chapman TJ, et al. Novel inhibitory effect of an LPA2 agonist on allergen-driven airway inflammation. Am J Respir Cell Mol Biol. 2016;54:402–409.
  • Orosa B, Garcia S, Martinez P, et al. Lysophosphatidic acid receptor inhibition as a new multipronged treatment for rheumatoid arthritis. Ann Rheum Dis. 2014;73:298–305.
  • Watanabe N, Ikeda H, Nakamura K, et al. Plasma lysophosphatidic acid level and serum autotaxin activity are increased in liver injury in rats in relation to its severity. Life Sci. 2007;81:1009–1015.
  • Balood M, Zahednasab H, Siroos B, et al. Elevated serum levels of lysophosphatidic acid in patients with multiple sclerosis. Hum Immunol. 2014;75:411–413.
  • Zahednasab H, Balood M, Harirchian MH, et al. Increased autotaxin activity in multiple sclerosis. J Neuroimmunol. 2014;273:120–123.
  • Van Meeteren LA, Ruurs P, Christodoulou E, et al. Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. J Biol Chem. 2005;280:21155–21161.
  • Tokumura A, Miyake M, Yoshimoto O, et al. Metal-lon stimulation and inhibition of lysophospholipase D which generates bioactive lysophosphatidic acid in rat plasma. Lipids. 1998;33:1009–1015.
  • Murph M, Tanaka T, Pang J, et al. Liquid chromatography mass spectrometry for quantifying plasma lysophospholipids: potential biomarkers for cancer diagnosis. Meth Enzymol. 2007;433:1–25.
  • Scherer M, Schmitz G, Liebisch G. High-throughput analysis of sphingosine 1-phosphate, sphinganine 1-phosphate, and lysophosphatidic acid in plasma samples by liquid chromatography-tandem mass spectrometry. Clin Chem. 2009;55:1218–1222.
  • Imamura S, Horiuti Y. Enzymatic determination of phospholipase D activity with choline oxidase. J Biochem. 1978;83:677–680.
  • Albers HMHG, Van Meeteren LA, Egan DA, et al. Discovery and optimization of boronic acid based inhibitors of autotaxin. J Med Chem. 2010;53:4958–4967.
  • Takakusa H, Kikuchi K, Urano Y, et al. Design and synthesis of an enzyme-cleavable sensor molecule for phosphodiesterase activity based on fluorescence resonance energy transfer. J Am Chem Soc. 2002;124:1653–1657.
  • Ferguson CG, Bigman CS, Richardson RD, et al. Fluorogenic phospholipid substrate to detect lysophospholipase D/autotaxin activity. Org Lett. 2006;8:2023–2026.
  • Vaiana AC, Neuweiler H, Schulz A, et al. Fluorescence quenching of dyes by tryptophan: interactions at atomic detail from combination of experiment and computer simulation. J Am Chem Soc. 2003;125:14564–14572.
  • Cavalli S, Houben AJS, Albers HMHG, et al. Development of an activity-based probe for autotaxin. ChemBioChem. 2010;11:2311–2317.
  • Kawaguchi M, Okabe T, Okudaira S, et al. Screening and X-ray crystal structure-based optimization of autotaxin (ENPP2) inhibitors, using a newly developed fluorescence probe. ACS Chem Biol. 2013;8:1713–1721.
  • Hoeglund AB, Howard AL, Wanjala IW, et al. Characterization of non-lipid autotaxin inhibitors. Bioorg Med Chem. 2010;18:769–776.
  • Pfizer. Pyrimidine and pyridine derivatives useful in therapy. WO2013054185A1. 2013.
  • Eli LC. Pyrido- or pyrrolo-fused pyrimidine derivatives as autotaxin inhibitors for treating pain. WO2014110000A1. 2014.
  • Eli LC. Imidazo pyridine compounds. WO2014143583A1. 2014.
  • Eli LC. Dihydropyrido pyrimidine compounds as autotaxin inhibitors. WO2014168824A1. 2014.
  • Jones SB, Pfeifer LA, Bleisch TJ, et al. Novel autotaxin inhibitors for the treatment of osteoarthritis pain: lead optimization via structure-based drug design. ACS Med Chem Lett. 2016;7:857–861.
  • Thirunavukkarasu K, Tan B, Swearingen CA, et al. Pharmacological characterization of a potent inhibitor of autotaxin in animal models of inflammatory bowel disease and multiple sclerosis. J Pharmacol Exp Ther. 2016;359:207–214.
  • Mitsubishi Tanabe Pharma Corporation. Novel 2-amino-pyridine and 2-amino-pyrimidine derivatives and medicinal use thereof. WO2015163435A1. 2015.
  • The University of Tokyo; Tohoku University; Shionogi & Co. 8-Substituted imidazopyrimidinone derivative having autotaxin inhibitory activity. WO2014133112 A1. 2014.
  • The University of Tokyo; Tohoku University; Shionogi & Co. 1-Substituted imidazopyrimidinone derivative having autotaxin-inhibiting activity. WO2015064714A1. 2015.
  • The University of Tokyo; Tohoku University; Shionogi & Co. Pyrimidinone derivative having autotaxin-inhibitory activity. WO2016031987A1. 2016.
  • Hoffmann-La Roche. New octahydro-pyrrolo[3,4-c]-pyrrole derivatives and analogs thereof as autotaxin inhibitors. WO2014139978A1. 2014.
  • Hoffmann-La Roche. New bicyclic derivatives. WO2014048865A1. 2014.
  • Hoffmann-La Roche. Bicyclic compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors. WO2015144605A1. 2015.
  • Biogen MA Inc. ATX modulating agents. WO2015188051A1. 2015.
  • The University of Tokyo; Tohoku University; Shionogi & Co. Fused pyrazole derivative having autotaxin inhibitory activity. WO2015129821A1. 2015.
  • Biogen Idec Inc. ATX modulating agents. WO2014018881A1. 2014.
  • Biogen Idec Inc. ATX modulating agents. WO2014018887A1. 2014.
  • Biogen Idec Inc. Compounds that are S1P modulating agents and/or ATX modulating agents. WO2014018891A1. 2014.
  • Biogen Idec Inc. Compounds that are S1P modulating agents and/or ATX modulating agents. WO2014025708A1. 2014.
  • Biogen Idec Inc. Compounds that are S1P modulating agents and/or ATX modulating agents. WO2014025709A1. 2014.
  • Pharmakea Inc. Heterocyclic vinyl autotaxin inhibitor compounds. WO2015042052A1. 2015.
  • Pharmakea Inc. Vinyl autotaxin inhibitor compounds. WO2015042053A1. 2015.
  • Pharmakea Inc. Autotaxin inhibitor compounds. WO2015048301A1. 2015.
  • Pharmakea Inc. Tetracyclic autotaxin inhibitors. WO2015077502A1. 2015.
  • Pharmakea Inc. Autotaxin inhibitor compounds. WO2015077503A1. 2015.
  • Pharmakea Inc. Methods and compositions for the treatment of metabolic disorders. WO2016028686A1. 2016.
  • Stein AJ, Bain G, Prodanovich P, et al. Structural basis for inhibition of human autotaxin by four potent compounds with distinct modes of binding. Mol Pharmacol. 2015;88:982–992.
  • Merck Patent GMBH. Piperidine and piperazine derivatives. WO2009046841A2. 2009.
  • Merck Patent GMBH. Heterocyclic compounds as autotaxin inhibitors. WO2010112116A1. 2010.
  • Merck Patent GMBH. Piperidine and piperazine derivatives as autotaxin inhibitors. WO2010115491A2. 2010.
  • Novartis. Autotaxin inhibitors. WO2014097151A2. 2014.
  • Novartis. Autotaxin inhibitors. US2014171403A1. 2014.
  • Novartis. Autotaxin inhibitors. WO2015162558A1. 2015.
  • Novartis. Autotaxin inhibitors comprising a heteroaromatic ring-benzyl-amide-cycle core. WO2015008230A1. 2015.
  • Novartis. Autotaxin inhibitors. WO2015008229A1. 2015.
  • Biogen Idec Inc. S1P and/or ATX modulating agents. WO2014152725A1. 2014.
  • Hoffmann-La Roche. Condensed [1,4]diazepine compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors. WO2015144609A1. 2015.
  • X-Rx Discovery Inc. Substituted spirocydic inhibitors of autotaxin. WO2015154023A1. 2015.
  • X-Rx Discovery Inc. Substituted N-(2-(amino)-2-oxoethyl)benzamide inhibitors of autotaxin and their preparation and use in the treatment of LPA-dependent or LPA-mediated diseases. WO2015175171A1. 2015.
  • Biogen Idec Inc. S1P and/or ATX modulating agents. WO2014081752A1. 2014.
  • Biogen Idec Inc. S1P and/or ATX modulating agents. WO2014081756A1. 2014.
  • ONO Pharmaceutical Co. Tetrahydrocarboline derivative. WO2012005227A1. 2012.
  • ONO Pharmaceutical Co. Tetrahydrocarboline derivative. WO2012127885A1. 2012.
  • Saga H, Ohhata A, Hayashi A, et al. A novel highly potent autotaxin/ENPP2 inhibitor produces prolonged decreases in plasma lysophosphatidic acid formation in vivo and regulates urethral tension. PLOS ONE. 2014;9:e93230.
  • Venkatraman G, Benesch MG, Tang X, et al. Lysophosphatidate signaling stabilizes Nrf2 and increases the expression of genes involved in drug resistance and oxidative stress responses: implications for cancer treatment. FASEB J. 2015;29:772–785.
  • Benesch MG, Ko YM, Tang X, et al. Autotaxin is an inflammatory mediator and therapeutic target in thyroid cancer. Endocr Relat Cancer. 2015;22:593–607.
  • Galapagos NV. Compounds and pharmaceutical compositions thereof for the treatment of inflammatory disorders. WO2014139882A1. 2014.
  • Galapagos NV Novel compounds and pharmaceutical compositions thereof for the treatment of inflammatory disorders. WO2014202458A1. 2014.
  • Galapagos NV. Belgium. [ cited 2016 Sep 5]. Available from: http://www.glpg.com/docs/view/573b49bf4c48b-en
  • Galapagos NV. Belgium. [ cited 2016 Sep 5]. Available from: http://files.glpg.com/docs/website_1/Poster_ERS_2015_final.pdf
  • Ribomic Inc. Aptamer inhibiting biological activity of autotaxin by binding with autotaxin, and use thereof. WO2015147290A1. 2015.
  • Ribomic Inc. Aptamer for bonding to autotaxin and inhibiting biological activity of autotaxin, and use for same. WO2015163458A1. 2015.
  • Kato K, Ikeda H, Miyakawa S, et al. Structural basis for specific inhibition of autotaxin by a DNA aptamer. Nat Struct Mol Biol. 2016;23:395–401.
  • Janssen Biotech Inc. Human autotaxin antibodies and methods of use. WO2013138241A1. 2013.
  • Vrontaki E, Melagraki G, Kaffe E, et al. Computer aided drug design approaches for identification of novel autotaxin (ATX) inhibitors. Curr Med Chem. 2016;23:1708–1724.
  • Katsamakas S, Bermperoglou E, Hadjipavlou-Litina D. Considering autotaxin inhibitors in terms of 2D-QSAR and 3D-mapping-review and evaluation. Curr Med Chem. 2015;22:1428–1461.
  • Fells JI, Lee SC, Norman DD, et al. Targeting the hydrophobic pocket of autotaxin with virtual screening of inhibitors identifies a common aromatic sulfonamide structural motif. FEBS J. 2014;281:1017–1028.
  • Kihara Y, Mizuno H, Chun J. Lysophospholipid receptors in drug discovery. Exp Cell Res. 2015;333:171–177.
  • Keune WJ, Hausmann J, Bolier R, et al. Steroid binding to autotaxin links bile salts and lysophosphatidic acid signaling. Nat Commun. 2016;7:11248.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.