181
Views
30
CrossRef citations to date
0
Altmetric
Review

miRNAs as potential therapeutic targets and diagnostic biomarkers for cardiovascular disease with a particular focus on WO2010091204

, , , , , , , & show all
Pages 1021-1029 | Received 02 Jan 2017, Accepted 15 Jun 2017, Published online: 03 Jul 2017

References

  • Nouraee N, Mowla SJ. miRNA therapeutics in cardiovascular diseases: promises and problems. Front Genet. 2015;6:232.
  • Mendis S, Thygesen K, Kuulasmaa K, et al. World Health Organization definition of myocardial infarction: 2008-09 revision. Int J Epidemiol. 2011;40:139–146.
  • Andreucci M, Faga T, Pisani A, et al. The ischemic/nephrotoxic acute kidney injury and the use of renal biomarkers in clinical practice. Eur J Intern Med. 2017 Apr;39:1–8.
  • Venkatachari NJ, Jain S, Walker L, et al. Transcriptome analyses identify key cellular factors associated with HIV-1 associated neuropathogenesis in infected men. AIDS.  2017 Mar 13;31(5):623–633.
  • Dong N, Zhang X, Liu Q. Identification of therapeutic targets for Parkinson’s disease via bioinformatics analysis. Mol Med Rep. 2017 Feb;15(2):731–735.
  • Xiaoyan W, Pais EM, Lan L, et al. MicroRNA-155: a novel armamentarium against inflammatory diseases. Inflammation. 2017 Apr;40(2):708–716.
  • Prasad KN. Oxidative stress and pro-inflammatory cytokines may act as one of the signals for regulating microRNAs expression in Alzheimer’s disease. Mech Ageing Dev. 2017 Mar;162:63–71.
  • Hassan N, Zhao JT, Sidhu SB. The role of microRNAs in the pathophysiology of adrenal tumors. Mol Cell Endocrinol. 2016 Dec 20. pii: S0303-7207(16)30518-4.
  • Wang YL, Gong WG, Yuan QL. Effects of miR-27a upregulation on thyroid cancer cells migration, invasion, and angiogenesis. Genet Mol Res. 2016 Dec 19;15(4).
  • O’Bryan S, Dong S, Mathis JM, et al. The roles of oncogenic miRNAs and their therapeutic importance in breast cancer. Eur J Cancer. 2016;72:1–11.
  • Zhang L, Huang Z, Zhang H, et al. Prognostic value of candidate microRNAs in gastric cancer: a validation study. Cancer Biomark. 2017;18(3):221–230.
  • Akbayir S, Muslu N, Erden S, et al. Diagnostic value of microRNAs in prostate cancer patients with prostate specific antigen (PSA) levels between 2, and 10 ng/mL. Turk J Urol. 2016;42:247–255.
  • Cortez-Dias N, Costa MC, Carrilho-Ferreira P, et al. Circulating miR-122-5p/miR-133b ratio is a specific early prognostic biomarker in acute myocardial infarction. Circ J. 2016;80:2183–2191.
  • Maciejak A, Kiliszek M, Opolski G, et al. miR-22-5p revealed as a potential biomarker involved in the acute phase of myocardial infarction via profiling of circulating microRNAs. Mol Med Rep. 2016;14:2867–2875.
  • Wang J, Zhang Y, Liu YM, et al. Huoxue Anxin Recipe () promotes myocardium angiogenesis of acute myocardial infarction rats by up-regulating miR-210 and vascular endothelial growth factor. Chin J Integr Med. 2016;22:685–690.
  • Coskunpinar E, Cakmak HA, Kalkan AK, et al. Circulating miR-221-3p as a novel marker for early prediction of acute myocardial infarction. Gene. 2016;591:90–96.
  • Geng HH, Li R, Su YM, et al. The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. Plos One. 2016;11:e0151753.
  • Liu X, Zhang Y, Du W, et al. MiR-223-3p as a novel MicroRNA regulator of expression of voltage-gated K+ channel Kv4.2 in acute myocardial infarction. Cell Physiol Biochem. 2016;39:102–114.
  • Eryilmaz U, Akgullu C, Beser N, et al. Circulating microRNAs in patients with ST-elevation myocardial infarction. Anatol J Cardiol. 2016;16:392–396.
  • Bye A, Rosjo H, Nauman J, et al. Circulating microRNAs predict future fatal myocardial infarction in healthy individuals - The HUNT study. J Mol Cell Cardiol. 2016;97:162–168.
  • Jia K, Shi P, Han X, et al. Diagnostic value of miR-30d-5p and miR-125b-5p in acute myocardial infarction. Mol Med Rep. 2016;14:184–194.
  • Borgia G, Maraolo AE, Buonomo AR, et al. The therapeutic potential of new investigational hepatitis C virus translation inhibitors. Expert Opin Investig Drugs. 2016;25:1209–1214.
  • Wang KJ, Zhao X, Liu YZ, et al. Circulating MiR-19b-3p, MiR-134-5p and MiR-186-5p are promising novel biomarkers for early diagnosis of acute myocardial infarction. Cell Physiol Biochem. 2016;38:1015–1029.
  • Liu Y, Li P, Cheng X, et al. Plasma MicroRNA-21 predicts postoperative pulmonary complications in patients undergoing pneumoresection. Mediators Inflamm. 2016;2016:3591934.
  • Han Z, Zhang L, Yuan L, et al. Change of plasma microRNA-208 level in acute myocardial infarction patients and its clinical significance. Ann Transl Med. 2015;3:307.
  • Yang X, Qin Y, Shao S, et al. MicroRNA-214 inhibits left ventricular remodeling in an acute myocardial infarction rat model by suppressing cellular apoptosis via the phosphatase and tensin homolog (PTEN). Int Heart J. 2016;57:247–250.
  • Li R, Geng HH, Xiao J, et al. miR-7a/b attenuates post-myocardial infarction remodeling and protects H9c2 cardiomyoblast against hypoxia-induced apoptosis involving Sp1 and PARP-1. Sci Rep. 2016;6:29082.
  • Shen Y, Shen Z, Miao L, et al. miRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-gamma-lyase expression. Antioxid Redox Signal. 2015;22:224–240.
  • Devaux Y, Vausort M, McCann GP, et al. A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction. Plos One. 2013;8:e70644.
  • Devaux Y, Vausort M, McCann GP, et al. MicroRNA-150: a novel marker of left ventricular remodeling after acute myocardial infarction. Circ Cardiovasc Genet. 2013;6:290–298.
  • Devaux Y, Mueller M, Haaf P, et al. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med. 2015;277:260–271.
  • Corsten MF, Dennert R, Jochems S, et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3:499–506.
  • Li Y, Maegdefessel L. My heart will go on-beneficial effects of anti-MiR-30 after myocardial infarction. Ann Transl Med. 2016;4:144.
  • Chen MC, Chang TH, Chang JP, et al. Circulating miR-148b-3p and miR-409-3p as biomarkers for heart failure in patients with mitral regurgitation. Int J Cardiol. 2016;222:148–154.
  • Vegter EL, Schmitter D, Hagemeijer Y, et al. Use of biomarkers to establish potential role and function of circulating microRNAs in acute heart failure. Int J Cardiol. 2016;224:231–239.
  • Li H, Fan J, Yin Z, et al. Identification of cardiac-related circulating microRNA profile in human chronic heart failure. Oncotarget. 2016;7:33–45.
  • Xu T, Zhou Q, Che L, et al. Circulating miR-21, miR-378, and miR-940 increase in response to an acute exhaustive exercise in chronic heart failure patients. Oncotarget. 2016;7:12414–12425.
  • Sygitowicz G, Tomaniak M, Blaszczyk O, et al. Circulating microribonucleic acids miR-1, miR-21 and miR-208a in patients with symptomatic heart failure: preliminary results. Arch Cardiovasc Dis. 2015;108:634–642.
  • Seronde MF, Vausort M, Gayat E, et al. Circulating microRNAs and outcome in patients with acute heart failure. Plos One. 2015;10:e0142237.
  • Ovchinnikova ES, Schmitter D, Vegter EL, et al. Signature of circulating microRNAs in patients with acute heart failure. Eur J Heart Fail. 2016;18:414–423.
  • Kaneko M, Satomi T, Fujiwara S, et al. AT1 receptor blocker azilsartan medoxomil normalizes plasma miR-146a and miR-342-3p in a murine heart failure model. Biomarkers. 2017;22(3-4):253–260.
  • Su M, Chen Z, Wang C, et al. Cardiac-specific overexpression of miR-222 induces heart failure and inhibits autophagy in mice. Cell Physiol Biochem. 2016;39:1503–1511.
  • Wei XJ, Han M, Yang FY, et al. Biological significance of miR-126 expression in atrial fibrillation and heart failure. Braz J Med Biol Res. 2015;48:983–989.
  • Sang HQ, Jiang ZM, Zhao QP, et al. MicroRNA-133a improves the cardiac function and fibrosis through inhibiting Akt in heart failure rats. Biomed Pharmacother. 2015;71:185–189.
  • Xiao Y, Zhang X, Fan S, et al. MicroRNA-497 inhibits cardiac hypertrophy by targeting Sirt4. Plos One. 2016;11:e0168078.
  • Duan Q, Yang L, Gong W, et al. MicroRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. J Cell Physiol. 2015;230:1964–1973.
  • Derda AA, Thum S, Lorenzen JM, et al. Blood-based microRNA signatures differentiate various forms of cardiac hypertrophy. Int J Cardiol. 2015;196:115–122.
  • Yan M, Chen C, Gong W, et al. miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc Res. 2015;105:340–352.
  • Wen P, Song D, Ye H, et al. Circulating MiR-133a as a biomarker predicts cardiac hypertrophy in chronic hemodialysis patients. Plos One. 2014;9:e103079.
  • Li Z, Liu L, Hou N, et al. miR-199-sponge transgenic mice develop physiological cardiac hypertrophy. Cardiovasc Res. 2016;110:258–267.
  • Li Q, Xie J, Wang B, et al. Overexpression of microRNA-99a attenuates cardiac hypertrophy. Plos One. 2016;11:e0148480.
  • Yin H, Zhao L, Zhang S, et al. MicroRNA1 suppresses cardiac hypertrophy by targeting nuclear factor of activated T cells cytoplasmic 3. Mol Med Rep. 2015;12:8282–8288.
  • Yang Y, Zhou Y, Cao Z, et al. miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy. Exp Ther Med. 2016;12:1556–1562.
  • Soci UP, Fernandes T, Barauna VG, et al. Epigenetic control of exercise training-induced cardiac hypertrophy by miR-208. Clin Sci (Lond). 2016;130:2005–2015.
  • Singh GB, Raut SK, Khanna S, et al. MicroRNA-200c modulates DUSP-1 expression in diabetes-induced cardiac hypertrophy. Mol Cell Biochem. 2017 Jan;424(1–2):1–11.
  • Zhang Y, Tang W, Peng L, et al. Identification and validation of microRNAs as endogenous controls for quantitative polymerase chain reaction in plasma for stable coronary artery disease. Cardiol J. 2016;23:694–703.
  • Jf OS, Neylon A, McGorrian C, et al. miRNA-93-5p and other miRNAs as predictors of coronary artery disease and STEMI. Int J Cardiol. 2016;224:310–316.
  • Du Y, Yang SH, Li S, et al. Circulating MicroRNAs as novel diagnostic biomarkers for very early-onset (</=40 years) coronary artery disease. Biomed Environ Sci. 2016;29:545–554.
  • Liu H, Yang N, Fei Z, et al. Analysis of plasma miR-208a and miR-370 expression levels for early diagnosis of coronary artery disease. Biomed Rep. 2016;5:332–336.
  • Li HY, Zhao X, Liu YZ, et al. Plasma MicroRNA-126-5p is associated with the complexity and severity of coronary artery disease in patients with stable angina pectoris. Cell Physiol Biochem. 2016;39:837–846.
  • Sung JH, Kim SH, Yang WI, et al. miRNA polymorphisms (miR146a, miR149, miR196a2 and miR499) are associated with the risk of coronary artery disease. Mol Med Rep. 2016;14:2328–2342.
  • Al-Kafaji G, Al-Mahroos G, Abdulla Al-Muhtaresh H, et al. Circulating endothelium-enriched microRNA-126 as a potential biomarker for coronary artery disease in type 2 diabetes mellitus patients. Biomarkers. 2017;22(3–4):268–278.
  • Luo L, Chen B, Li S, et al. Plasma miR-10a: a potential biomarker for coronary artery disease. Dis Markers. 2016;2016:3841927.
  • Schulte C, Molz S, Appelbaum S, et al. miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. Plos One. 2015;10:e0145930.
  • Zhou J, Shao G, Chen X, et al. miRNA 206 and miRNA 574-5p are highly expression in coronary artery disease. Biosci Rep. 2015;36:e00295.
  • Chen J, Xu L, Hu Q, et al. MiR-17-5p as circulating biomarkers for the severity of coronary atherosclerosis in coronary artery disease. Int J Cardiol. 2015;197:123–124.
  • Wang S, He W, Wang C. MiR-23a regulates the vasculogenesis of coronary artery disease by targeting epidermal growth factor receptor. Cardiovasc Ther. 2016;34:199–208.
  • Tang Y, Zhang YC, Chen Y, et al. The role of miR-19b in the inhibition of endothelial cell apoptosis and its relationship with coronary artery disease. Sci Rep. 2015;5:15132.
  • Mehta R, Otgonsuren M, Younoszai Z, et al. Circulating miRNA in patients with non-alcoholic fatty liver disease and coronary artery disease. BMJ Open Gastroenterol. 2016;3:e000096.
  • Meiler S, Baumer Y, Toulmin E, et al. MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35:323–331.
  • He PP, OuYang XP, Li Y, et al. MicroRNA-590 inhibits lipoprotein lipase expression and prevents atherosclerosis in apoe knockout mice. Plos One. 2015;10:e0138788.
  • Zhang JY, Gong YL, Li CJ, et al. Circulating MiRNA biomarkers serve as a fingerprint for diabetic atherosclerosis. Am J Transl Res. 2016;8:2650–2658.
  • Huang Y, Chen J, Zhou Y, et al. Circulating miR-30 is related to carotid artery atherosclerosis. Clin Exp Hypertens. 2016;38:489–494.
  • Kim SH, Kim GJ, Umemura T, et al. Aberrant expression of plasma microRNA-33a in an atherosclerosis-risk group. Mol Biol Rep. 2017 Feb;44(1):79–88.
  • Virtue A, Johnson C, Lopez-Pastrana J, et al. MicroRNAa-155 deficiency leads to decreased atherosclerosis, increased white adipose tissue obesity and nonalcoholic fatty liver disease: a novel mouse model of obesity paradox. J Biol Chem. 2017 Jan 27;292(4):1267–1287.
  • Li K, Ching D, Luk FS, et al. Apolipoprotein E enhances microRNA-146a in monocytes and macrophages to suppress nuclear factor-kappaB-driven inflammation and atherosclerosis. Circ Res. 2015;117:e1–e11.
  • Huang Y, Tang S, Ji-Yan C, et al. Circulating miR-92a expression level in patients with essential hypertension: a potential marker of atherosclerosis. J Hum Hypertens. 2017 Mar;31(3):200–205.
  • Yao Y, Du J, Cao X, et al. Plasma levels of microRNA-499 provide an early indication of perioperative myocardial infarction in coronary artery bypass graft patients. Plos One. 2014;9:e104618.
  • Dorn GW 2nd, Matkovich SJ, Eschenbacher WH, et al. A human 3’ miR-499 mutation alters cardiac mRNA targeting and function. Circ Res. 2012;110:958–967.
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.
  • Brennecke J, Stark A, Russell RB, et al. Principles of microRNA-target recognition. Plos Biol. 2005;3:e85.
  • Wang JX, Jiao JQ, Li Q, et al. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med. 2011;17:71–78.
  • Zhu J, Yao K, Wang Q, et al. Ischemic postconditioning-regulated miR-499 protects the rat heart against ischemia/reperfusion injury by inhibiting apoptosis through PDCD4. Cell Physiol Biochem. 2016;39:2364–2380.
  • Jia Z, Wang J, Shi Q, et al. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition. Apoptosis. 2016;21:174–183.
  • Wang J, Jia Z, Zhang C, et al. miR-499 protects cardiomyocytes from H 2O 2-induced apoptosis via its effects on Pdcd4 and Pacs2. RNA Biol. 2014;11:339–350.
  • Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327:198–201.
  • Gebert LF, Rebhan MA, Crivelli SE, et al. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res. 2014;42:609–621.
  • Sacco RL, Roth GA, Reddy KS, et al. The heart of 25 by 25: achieving the goal of reducing global and regional premature deaths from cardiovascular diseases and stroke: a modeling study from the American Heart Association and World Heart Federation. Circulation. 2016;133:e674–690.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.