899
Views
49
CrossRef citations to date
0
Altmetric
Review

LpxC inhibitors: a patent review (2010-2016)

&
Pages 1227-1250 | Received 28 Apr 2017, Accepted 24 Jul 2017, Published online: 04 Aug 2017

References

  • The top 10 causes of death. Fact sheet No. 310 [internet]. Geneva: World Health Organization; 2017. cited 2017 July 29. Available from: http://www.who.int/mediacentre/factsheets/fs310/en/.
  • Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2095–2128.
  • Perman SM, Goyal M, Gaieski DF. Initial emergency department diagnosis and management of adult patients with severe sepsis and septic shock. Scand J Trauma Resusc Emerg Med. 2012;20:41.
  • Slade E, Tamber PS, Vincent JL. The surviving sepsis campaign: raising awareness to reduce mortality. Crit Care. 2003;7(1):1–2.
  • Abubakar I, Zignol M, Falzon D, et al. Drug-resistant tuberculosis: time for visionary political leadership. Lancet Infect Dis. 2013;13(6):529–539.
  • Arias CA. Murray BE: the rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012;10(4):266–278.
  • Stefani S, Chung DR, Lindsay JA, et al. Methicillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. Int J Antimicrob Agents. 2012;39(4):273–282.
  • Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics [internet]. 2017 cited 2017 Mar 20. Available from: http://www.Who.Int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/. Press Release.
  • Guentzel MN. Escherichia, Klebsiella, Enterobacter, Serratia, Citrobacter, and Proteus. In: Baron S, editor. Medical microbiology. University of Texas Medical Branch at Galveston, Galveston (TX); 1996.
  • Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Infect Control. 2006;34(5 Suppl 1): S20–28. discussion S64-73.
  • Zarkotou O, Pournaras S, Tselioti P, et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect. 2011;17(12):1798–1803.
  • Bassetti M, Ginocchio F, Mikulska M, et al. Will new antimicrobials overcome resistance among gram-negatives? Expert Rev Anti Infect Ther. 2011;9(10):909–922.
  • Peleg AY. Hooper DC: hospital-acquired infections due to gram-negative bacteria. N Engl J Med. 2010;362(19):1804–1813.
  • Wright GD. Aminoglycoside-modifying enzymes. Curr Opin Microbiol. 1999;2(5):499–503.
  • Silhavy TJ, Kahne D. Walker S: the bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010;2(5):a000414.
  • Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta. 2009;1794(5):808–816.
  • Vaara M. Outer membrane permeability barrier to azithromycin, clarithromycin, and roxithromycin in gram-negative enteric bacteria. Antimicrob Agents Chemother. 1993;37(2):354–356.
  • Vuorio R, Vaara M. The lipid A biosynthesis mutation lpxA2 of Escherichia coli results in drastic antibiotic supersusceptibility. Antimicrob Agents Chemother. 1992;36(4):826–829.
  • Lerouge I, Vanderleyden J. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev. 2002;26(1):17–47.
  • Raetz CR, Reynolds CM, Trent MS, et al. Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem. 2007;76:295–329.
  • Kalinin DV, Holl R. Insights into the zinc-dependent deacetylase LpxC: biochemical properties and inhibitor design. Curr Top Med Chem. 2016;16(21):2379–2430.
  • Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700.
  • Whittington DA, Rusche KM, Shin H, et al. Christianson DW: crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis. Proc Natl Acad Sci USA. 2003;100(14):8146–8150.
  • Clayton GM, Klein DJ, Rickert KW, et al. Structure of the bacterial deacetylase LpxC bound to the nucleotide reaction product reveals mechanisms of oxyanion stabilization and proton transfer. J Biol Chem. 2013;288(47):34073–34080.
  • Barb AW, McClerren AL, Snehelatha K, et al. Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli. Biochemistry. 2007;46(12):3793–3802.
  • Barb AW, Jiang L, Raetz CR, et al. Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: time-dependent inhibition and specificity in ligand binding. Proc Natl Acad Sci USA. 2007;104(47):18433–18438.
  • Reddy PAP, Mansoor UF, Siddiqui MA, Merck Sharp & Dohme Corp. Synthesis and use of heterocyclic antibacterial agents. WO 2009158369. 2009.
  • Brown MF, Reilly U, Abramite JA, et al. Potent inhibitors of LpxC for the treatment of gram-negative infections. J Med Chem. 2012;55(2):914–923.
  • Montgomery JI, Brown MF, Reilly U, et al. Pyridone methylsulfone hydroxamate LpxC inhibitors for the treatment of serious gram-negative infections. J Med Chem. 2012;55(4):1662–1670.
  • Lee CJ, Liang X, Chen X, et al. Species-specific and inhibitor-dependent conformations of LpxC: implications for antibiotic design. Chem Biol. 2011;18(1):38–47.
  • Liang X, Lee CJ, Chen X, et al. Syntheses, structures and antibiotic activities of LpxC inhibitors based on the diacetylene scaffold. Bioorg Med Chem. 2011;19(2):852–860.
  • Liang X, Lee CJ, Zhao J, et al. Synthesis, structure, and antibiotic activity of aryl-substituted LpxC inhibitors. J Med Chem. 2013;56(17):6954–6966.
  • Lee CJ, Liang X, Wu Q, et al. Drug design from the cryptic inhibitor envelope. Nat Commun. 2016;7:10638.
  • Mansoor UF, Vitharana D, Reddy PA, et al. Siddiqui MA: design and synthesis of potent gram-negative specific LpxC inhibitors. Bioorg Med Chem Lett. 2011;21(4):1155–1161.
  • Mansoor UF, Reddy PA, Siddiqui MA, Schering Corporation, USA. Preparation of urea derivatives as antibacterial agents for treatment of diseases mediated by LpxC. WO 2010017060. 2010.
  • Patten PA, Armstrong ES, Achaogen, Inc., USA. Combinations comprising a LpxC inhibitor and an antibiotic for use in the treatment of infections caused by gram-negative bacteria. WO 2011005355. 2011.
  • Kasar R, Linsell MS, Aggen JB, et al., Achaogen, Inc., USA. Preparation of hydroxamic acid derivatives useful in the treatment of bacterial infections. WO 2012154204. 2012.
  • Serio AW, Kubo A, Lopez S, et al. Structure, potency and bactericidal activity of ACHN-975, a first-in-class LpxC inhibitor. 53rd Interscience Conference on Antimicrobial Agents and Chemotherapy; Denver, Colorado, United States; September 10-13, 2013, poster # F-1226. Available from: https://static1.squarespace.com/static/51199d96e4b084d1d0b105c3/t/526eb044e4b043e300352a3f/1382985796744/ICAAC-2013_Poster_F-1226.pdf.
  • Badal R, Hoban D, Hackel M, et al. In vitro activity of ACHN-975 against 1,050 non-fermentative gram-negative bacilli. 53rd Interscience Conference on Antimicrobial Agents and Chemotherapy; Denver, Colorado, United States; September 10-13, 2013, poster # E-614. Available from: https://static1.squarespace.com/static/51199d96e4b084d1d0b105c3/t/52702f8de4b03475d0db8b76/1383083917349/ICAAC-2013_Poster_E-614.pdf.
  • Marchand C, Miller L, Halasohoris S, et al. In vitro activity of ACHN-975 against biodefense pathogens. 53rd Interscience Conference on Antimicrobial Agents and Chemotherapy; Denver, Colorado, United States; September 10-13, 2013, poster # E-1187. Available from: https://static1.squarespace.com/static/51199d96e4b084d1d0b105c3/t/52701ea0e4b0d777ef6203c8/1383079584922/ICAAC-2013_Poster_E-1187.pdf.
  • Moffatt JH, Harper M, Harrison P, et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother. 2010;54(12):4971–4977.
  • Trend R, Kasar RA, Achaogen, Inc., USA. Preparation of N-((S)-3-amino-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl)-4-(((1R,2R)-2-(hydroxymethyl)cyclopropyl)buta-1,3-diynyl)benzamide useful in the treatment of bacterial infection. WO 2013039947. 2013.
  • Achaogen Inc. Annual report on form 10-k. 2015. Available from: http://investors.Achaogen.Com/secfiling.Cfm?Filingid=1628280-15-1797&cik=:
  • Achaogen, Inc. A study to assess the safety, tolerability, and pharmacokinetics of ACHN-975 in healthy volunteers. In: clinicaltrials.Gov [internet]. Bethesda (MD): National library of medicine (US); 2000. cited 2016 Mar 09. Available from: https://clinicaltrials.Gov/ct2/show/nct01597947?Term=nct01597947&rank=1 Nlm identifier: Nct01597947:.
  • Achaogen, Inc. A multiple dose study to assess the safety, tolerability, and pharmacokinetics of ACHN-975 in healthy volunteers. In: Clinicaltrials.Gov [internet]. Bethesda (MD): National library of medicine (US); 2000. cited 2016 Mar 09. Available from: https://clinicaltrials.Gov/ct2/show/nct01870245?Term=achn-975&rank=1 Nlm identifier: Nct01870245:.
  • Singh SB. Confronting the challenges of discovery of novel antibacterial agents. Bioorg Med Chem Lett. 2014;24(16):3683–3689.
  • Linsell MS, Aggen JB, Dozzo P, et al., Achaogen, Inc., USA. Preparation of phenyl azetidinyl and phenyl pyrrolidinyl compounds as antibacterial agents that act by inhibiting LpxC. WO 2014165075. 2014.
  • Benenato KE, Choy AL, Hale MR, et al., AstraZeneca AB, Swed.; AstraZeneca UK Limited. Preparation of hydroxamic acid derivatives as gram-negative antibacterial agents. WO 2010100475. 2010.
  • Brown MF, Marfat A, Melnick MJ, et al., Pfizer Inc., USA. Preparation of C-linked hydroxamic acid derivatives as antibacterial agents. WO 2011045703. 2011.
  • Brown MF, Che Y, Marfat A, et al., Pfizer Inc., USA. N-linked hydroxamic acid derivatives as antibacterial agents and their preparation and use in the treatment of bacterial infection. WO 2011073845. 2011.
  • Brown MF, Che Y, Melnick MJ, et al., Pfizer Inc., USA. Preparation of fluoro-pyridinone methylsulfonyl hydroxamate derivatives as antibacterial agents. WO 2012120397. 2012.
  • Abramite JA, Brown MF, Chen JM, et al., Pfizer Inc., USA. Preparation of isoxazole derivatives useful as antibacterial agents. WO 2012137094. 2012.
  • Brown MF, Chen JM, Melnick M, et al., Pfizer Inc., USA. Preparation of N-linked hydroxamic acid derivatives as LpxC inhibitors useful as antibacterial agents. WO 2012137099. 2012.
  • McAllister LA, Montgomery JI, Abramite JA, et al. Heterocyclic methylsulfone hydroxamic acid LpxC inhibitors as gram-negative antibacterial agents. Bioorg Med Chem Lett. 2012;22(22):6832–6838.
  • Chapoux G, Gauvin J-C, Panchaud P, et al., Actelion Pharmaceuticals Ltd., Switz. Preparation of dihydropyrrolo[1,2-c]imidazol-3-one derivatives useful as antibacterial agents. WO 2015132228. 2015.
  • Gauvin J-C, Surivet J-P, Actelion Pharmaceuticals Ltd., Switz. Preparation of antibacterial quinazoline-4(3H)-one derivatives. WO 2015173329. 2015.
  • Dobler MR, Lenoir F, Parker DT, et al., Novartis AG, Switz. Preparation of ((hydroxyamino)oxoethyl)benzamide derivatives for use as antibacterial agents. WO 2010031750. 2010.
  • Fu J, Karur S, Madera AM, et al., Novartis AG, Switz. Preparation of hydroxamic acid derivatives as LpxC inhibitors useful for the treatment of bacterial infection. WO 2014160649. 2014.
  • Fu J, Karur S, Lee P, et al., Novartis AG, Switz.; Jin, Xianming; Lapointe, Guillaume. Preparation of isoxazoline hydroxamic acid derivatives as LpxC inhibitors useful for the treatment of bacterial infection. WO 2015164458. 2015.
  • Fu J, Lee P, Madera AM, et al., Novartis AG, Switz. Preparation of oxazolidinone hydroxamic acid compounds for the treatment of bacterial infections. WO 2015066413. 2015.
  • Zhou P, Toone EJ, Duke University, USA Ethynylbenzene derivatives as LpxC inhibitors and their preparation and use for the treatment of gram-negative bacterial infections. WO 2012031298. 2012.
  • Zhou P, Toone EJ, Nicholas RA, Duke University, USA Substituted hydroxamic acid compounds. WO 2015024010. 2015.
  • Zhou P, Toone EJ, Nicholas RA, Duke University, USA. Gram-negative antibacterial compounds. WO 2015024021. 2015.
  • Zhou P, Toone EJ, Nicholas RA, Duke University, USA. 2-Piperidinyl N,3-dihydroxybutanamide as antibacterial agents. WO 2015024016. 2015.
  • Atadja P. Development of the pan-DAC inhibitor panobinostat (LBH589): successes and challenges. Cancer Lett. 2009;280(2):233–241.
  • Mann BS, Johnson JR, Cohen MH, et al. Pazdur R: FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007;12(10):1247–1252.
  • Pohlman B, Advani R, Duvic M, et al. Final results of a phase II trial of belinostat (PXD101) in patients with recurrent or refractory peripheral or cutaneous T-cell lymphoma. Blood. 2009;114(22):379–379.
  • Dalvie D, Cosker T, Boyden T, et al. Metabolism distribution and excretion of a matrix metalloproteinase-13 inhibitor, 4-[4-(4-fluorophenoxy)-benzenesulfonylamino]tetrahydropyran-4-carboxylic acid hydroxyamide (CP-544439), in rats and dogs: assessment of the metabolic profile of CP-544439 in plasma and urine of humans. Drug Metab Dispos. 2008;36(9):1869–1883.
  • Mulder GJ. Meerman JHN: sulfation and glucuronidation as competing pathways in the metabolism of hydroxamic acids – the role of N,O-sulfonation in chemical carcinogenesis of aromatic-amines. Environ Health Persp. 1983;49:(Mar):27-32.
  • Warmus JS, Quinn CL, Taylor C, et al. Structure based design of an in vivo active hydroxamic acid inhibitor of P. aeruginosa LpxC. Bioorg Med Chem Lett. 2012;22(7):2536–2543.
  • Whittaker M, Cd F, Brown P, et al. Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev. 1999;99(9):2735–2776.
  • Chen MH, Steiner MG, De Laszlo SE, et al. Raetz CRH: carbohydroxamido-oxazolidines: antibacterial agents that target lipid A biosynthesis. Bioorg Med Chem Lett. 1999;9(3):313–318.
  • Cuny GD. A new class of UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase (LpxC) inhibitors for the treatment of gram-negative infections: PCT application WO 2008027466. Expert Opin Ther Pat. 2009;19(6):893–899.
  • Jackman JE, Fierke CA, Tumey LN, et al. Raetz CRH: antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(R-3-hydroxymyristoyl)-N-acetyglucosamine deacetylases by substrate analogs containing zinc binding motifs. J Biol Chem. 2000;275(15):11002–11009.
  • Onishi HR, Pelak BA, Gerckens LS, et al. Antibacterial agents that inhibit lipid A biosynthesis. Science. 1996;274(5289):980–982.
  • Pirrung MC, Tumey LN, Raetz CRH, et al. Rusche KM: inhibition of the antibacterial target UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC): isoxazoline zinc amidase inhibitors bearing diverse metal binding groups. J Med Chem. 2002;45(19):4359–4370.
  • Shin H, Gennadios HA, Whittington DA, et al. Amphipathic benzoic acid derivatives: synthesis and binding in the hydrophobic tunnel of the zinc deacetylase LpxC. Bioorg Med Chem. 2007;15(7):2617–2623.
  • Cohen SM, Puerta DT, Perez C, The Regents of the University of California, USA. Inhibitors of LpxC. WO 2015085238. 2015.
  • Hoekstra WJ, Yates CM, Rafferty SW, Viamet Pharmaceuticals, Inc., USA. Preparation of naphthyridine and isoquinoline derivatives as metalloenzyme inhibitors. WO 2014117090. 2014.
  • Achaogen Inc.: Annual report pursuant to section 13 or 15(d) of the securities exchange act of 1934 [internet]. 2017 cited 2017 Jul 10. Available from: http://investors.Achaogen.Com/secfiling.Cfm?Filingid=1564590-17-4283&cik=1301501
  • Zeng D, Zhao J, Chung HS, et al. Mutants resistant to LpxC inhibitors by rebalancing cellular homeostasis. J Biol Chem. 2013;288(8):5475–5486.
  • Tomaras AP, McPherson CJ, Kuhn M, et al. LpxC inhibitors as new antibacterial agents and tools for studying regulation of lipid A biosynthesis in gram-negative pathogens. MBio. 2014;5(5):e01551–01514.
  • Caughlan RE, Jones AK, Delucia AM, et al. Dean CR: mechanisms decreasing in vitro susceptibility to the LpxC inhibitor CHIR-090 in the gram-negative pathogen Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56(1):17–27.
  • Clements JM, Coignard F, Johnson I, et al. Hunter MG: antibacterial activities and characterization of novel inhibitors of LpxC. Antimicrob Agents Chemother. 2002;46(6):1793–1799.
  • Boll JM, Crofts AA, Peters K, et al. Trent MS: A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient Acinetobacter baumannii. Proc Natl Acad Sci USA. 2016;113(41). E6228-E6237.
  • Lin L, Tan B, Pantapalangkoor P, et al. Inhibition of LpxC protects mice from resistant Acinetobacter baumannii by modulating inflammation and enhancing phagocytosis. MBio. 2012;3:5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.