171
Views
7
CrossRef citations to date
0
Altmetric
Review

Identification of spirocyclic or phosphate substituted quinolizine derivatives as novel HIV-1 integrase inhibitors: a patent evaluation of WO2016094197A1, WO2016094198A1 and WO2016154527A1

, , , , &
Pages 1277-1286 | Received 29 May 2017, Accepted 24 Jul 2017, Published online: 02 Aug 2017

References

  • World Health Organization. Global Health Observatory (GHO) data. Available from: http://www.who.int/gho/hiv/en/, 2017-03-01.
  • Zhan P, Chen X, Li D, et al. HIV-1 NNRTIs: structural diversity, pharmacophore similarity, and implications for drug design. Med Res Rev. 2013;33(Suppl 1):E1–E72.
  • Zhan P, Pannecouque C, De Clercq E, et al. Anti-HIV drug discovery and development: current innovations and future trends. J Med Chem. 2015;59(7):2849–2878.
  • Menéndez-Arias L. Molecular basis of human immunodeficiency virus type 1 drug resistance: overview and recent developments. Antiviral Res. 2013;98(1):93–120.
  • Kang D, Song Y, Chen W, et al. “Old dogs with new tricks”: exploiting alternative mechanisms of action and new drug design strategies for clinically validated HIV targets. Mol Biosyst. 2014;10(8):1998–2022.
  • Arts EJ, Hazuda DJ. HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med. 2012;2(4):a007161.
  • Marchand C, Maddali K, Métifiot M, et al. HIV-1 IN inhibitors: 2010 update and perspectives. Curr Top Med Chem. 2009;9(11):1016–1037.
  • Klibanov OM. Elvitegravir, an oral HIV integrase inhibitor, for the potential treatment of HIV infection. Curr Opin Investig Drugs. 2009;10(2):190–200.
  • Rowley M. The discovery of raltegravir, an integrase inhibitor for the treatment of HIV infection. Prog Med Chem. 2008;46(46):1–28.
  • Murray JM, Emery S, Kelleher AD, et al. Antiretroviral therapy with the integrase inhibitor raltegravir alters decay kinetics of HIV, significantly reducing the second phase. AIDS. 2007;21(17):2315–2321.
  • McColl DJ, Chen X. Strand transfer inhibitors of HIV-1 integrase: bringing IN a new era of antiretroviral therapy. Antiviral Res. 2010;85(1):101–118.
  • Buzón MJ, Dalmau J, Puertas MC, et al. The HIV-1 integrase genotype strongly predicts raltegravir susceptibility but not viral fitness of primary virus isolates. AIDS. 2010;24(1):17–25.
  • Rathbun RC, Lockhart SM, Miller MM, et al. Dolutegravir, a second-generation integrase inhibitor for the treatment of HIV-1 infection. Ann Pharmacother. 2014;48(3):395–403.
  • Mouscadet J-F, Delelis O, Marcelin A-G, et al. Resistance to HIV-1 integrase inhibitors: a structural perspective. Drug Resist Updat. 2010;13(4–5):139–150.
  • Kobayashi M, Yoshinaga T, Seki T, et al. In vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob Agents Chemother. 2011;55(2):813–821.
  • Hightower KE, Wang R, Deanda F, et al. Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob Agents Chemother. 2011;55(10):4552–4559.
  • Gillette MA, Shah BM, Schafer JJ, et al. Dolutegravir: a new integrase strand transfer inhibitor for the treatment of HIV – an alternative viewpoint. Pharmacotherapy. 2014;34(9):e173–4.
  • Katlama C, Murphy R. Dolutegravir for the treatment of HIV. Expert Opin Investig Drugs. 2012;21(4):523–530.
  • Isaacs RC, Thompson WJ, Williams PD, et al. HIV integrase inhibitors. US20130338141A1. 2013.
  • Venkatraman S, Wai JS, Thompson W, et al. Bridged compounds as HIV integrase inhibitors. WO2010088167A1. 2010.
  • Embrey MW, Graham TH, Walji A, et al. 4-Pyridinonetriazine derivatives as HIV integrae inhibiotrs. WO2014099586 A1. 2014.
  • Coleman PJ, Embrey M, Hartingh TJ, et al. Substituted naphthyridinedione derivatives as HIV integrase inhibitors. WO2014018449A1. 2014.
  • Barbe G, Nguyen NNM, Blouin M, et al. HIV integrase inhibitors. WO2012058173A1. 2012.
  • Embrey MW, Graham TH, Raheem IT, et al. Spirocyclic heterocycle compounds useful as HIV integrase inhibitors. WO2016094197A1. 2016.
  • Graham TH, Embrey MW, Walji A, et al. Spirocyclic heterocycle compounds useful as HIV integrase inhibitors. WO2016094198A1. 2016.
  • Yu T, Waddell ST, Mccauley JA, et al. Phosphate-substituted quinolizine derivatives useful as HIV integrase inhibitors. WO2016154527A1. 2016.
  • Augustine JK, Vairaperumal V, Narasimhan S, et al. Propylphosphonic anhydride (T3P ®): an efficient reagent for the one-pot synthesis of 1,2,4-oxadiazoles, 1,3,4-oxadiazoles, and 1,3,4-thiadiazoles. Tetrahedron. 2009;65(48):9989–9996.
  • Ma Y, Luo W, Camplo M, et al. Novel iron-specific fluorescent probes. Bioorg Med Chem Lett. 2005;15(14):3450–3452.
  • Coleman PJ, Hartingh TJ, Raheem IT, et al. Fused tricyclic heterocyclic compounds as HIV integrase inhibitors. WO2014183532A1. 2014.
  • Bacon EM, Cai ZR, Cottell JJ, et al. Polycyclic-carbamoylpyridone compounds and their pharmaceutical use. US2016176870A1. 2016.
  • Abbate V, Reelfs O, Kong X, et al. Dual selective iron chelating probes with a potential to monitor mitochondrial labile iron pools. Chem Commun (Camb). 2016;52(4):784–787.
  • Rautio J, Kumpulainen H, Heimbach T, et al. Prodrugs: design and clinical applications. Nat Rev Drug Discov. 2008;7(3):255–270.
  • Huttunen KM, Rautio J. Prodrugs – an efficient way to breach delivery and targeting barriers. Curr Top Med Chem. 2011;11(18):2265–2287.
  • Todd PA, Heel RC. Enalapril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure. Drugs. 1986;31(3):198–248.
  • Mcclellan K, Perry C. Oseltamivir: a review of its use in influenza. Drugs. 2001;61(2):263–283.
  • Chapman T, McGavin J, Noble S. Tenofovir disoproxil fumarate. Drugs. 2003;63(15):1597–1608.
  • Walji AM, Sanchez RI, Clas S-D, et al. Discovery of MK-8970: an acetal carbonate prodrug of raltegravir with enhanced colonic absorption. Chemmedchem. 2015;10(2):245–252.
  • Chen Y-C. Beware of docking! Trends Pharmacol Sci. 2015;36(2):78–95.
  • Martin DP, Blachly PG, McCammon JA, et al. Exploring the influence of the protein environment on metal-binding pharmacophores. J Med Chem. 2014;57(16):7126–7135.
  • DeSimone RW, Currie KS, Mitchell SA, et al. Privileged structures: applications in drug discovery. Comb Chem High Throughput Screen. 2004;7(5):473–494.
  • Duarte CD, Barreiro EJ, Fraga CA. Privileged structures: a useful concept for the rational design of new lead drug candidates. Mini Rev Med Chem. 2007;7(11):1108–1119.
  • Welsch ME, Snyder SA, Stockwell BR. Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol. 2010;14(3):347–361.
  • Li Z, Zhan P, Liu X. 1,3,4-Oxadiazole: a privileged structure in antiviral agents. Mini Rev Med Chem. 2011;11(13):1130–1142.
  • Song Y, Zhan P, Zhang Q, et al. Privileged scaffolds or promiscuous binders: a glance of pyrrolo[2,1-f][1,2,4]triazines and related bridgehead nitrogen heterocycles in medicinal chemistry. Curr Pharm Des. 2013;19(8):1528–1548.
  • Song Y, Zhan P, Liu X. Heterocycle-thioacetic acid motif: a privileged molecular scaffold with potent, broad-ranging pharmacological activities. Curr Pharm Des. 2013;19(40):7141–7154.
  • Song Y, Chen W, Kang D, et al. “Old friends in new guise”: exploiting privileged structures for scaffold re-evolution/refining. Comb Chem High Throughput Screen. 2014;17(6):536–553.
  • Berthet M, Cheviet T, Dujardin G, et al. Isoxazolidine: a privileged scaffold for organic and medicinal chemistry. Chem Rev. 2016;116(24):15235–15283.
  • Böhm H-J, Flohr A, Stahl M, et al. Scaffold hopping. Drug Discov Today. 2004;1(3):217–224.
  • Pryde DC, Webster R, Butler SL, et al. Discovery of an HIV integrase inhibitor with an excellent resistance profile. Bioorg Med Chem Lett. 2017;27(9):2038–2046.
  • Johnson TW, Tanis SP, Butler SL, et al. Design and synthesis of novel N-hydroxy-dihydronaphthyridinones as potent and orally bioavailable HIV-1 integrase inhibitors. J Med Chem. 2011;54(9):3393–3417.
  • Kang D, Fang Z, Li Z, et al. Design, synthesis and evaluation of thiophene[3,2 d]pyrimidine derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors with significantly improved drug resistance profiles. J Med Chem. 2016;59(17):7991–8007.
  • Kang D, Fang Z, Huang B, et al. Structure-based optimization of thiophene[3,2-d]pyrimidine derivatives as potent HIV-1 non-nucleoside reverse transcriptase inhibitors with improved potency against resistance-associated variants. J Med Chem. 2017;60(10):4424–4443.
  • Klumpp K, Hang JQ, Rajendran S, et al. Two-metal ion mechanism of RNA cleavage by HIV RNase H and mechanism-based design of selective HIV RNase H inhibitors. Nucl Acids Res. 2003;31(23):6852–9.54.
  • Cuzzucoli Crucitti G, Métifiot M, Pescatori L, et al. Structure-activity relationship of pyrrolyl diketo acid derivatives as dual inhibitors of HIV-1 integrase and reverse transcriptase ribonuclease H domain. J Med Chem. 2015;58(4):1915–1928.
  • Budihas SR, Gorshkova I, Gaidamakov S, et al. Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones. Nucl Acids Res. 2005;33(4):1249–1256.
  • Semenova EA, Johnson AA, Marchand C, et al. Preferential inhibition of the magnesium-dependent strand transfer reaction of HIV-1 integrase by α-hydroxytropolones. Mol Pharmacol. 2006;69(4):1454–1460.
  • Beilhartz GL, Wendeler M, Baichoo N, et al. HIV-1 reverse transcriptase can simultaneously engage its DNA/RNA substrate at both the DNA polymerase and RNase H active sites: implications for RNase H inhibition. J Mol Biol. 2009;388(3):462–474.
  • Reguera J, Weber F, Cusack S. Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog. 2010;6(9):e1001101.
  • Krieger IV, Freundlich JS, Gawandi VB, et al. Structure-guided discovery of phenyl diketo-acids as potent inhibitors of M. tuberculosis malate synthase. Chem Biol. 2012;19(12):1556–1567.
  • Wai JS, Egbertson MS, Payne LS, et al. 4-Aryl-2,4-dioxobutanoic acid inhibitors of HIV-1 integrase and viral replication in cells. J Med Chem. 2000;43(26):4923–4926.
  • Kirschberg TA, Balakrishnan M, Squires NH, et al. RNase H active site inhibitors of human immunodeficiency virus type 1 reverse transcriptase: design, biochemical activity, and structural information. J Med Chem. 2009;52(19):5781–5784.
  • Summa V, Petrocchi A, Matassa VG, et al. HCV NS5b RNA-dependent RNA polymerase inhibitors: from alpha, gamma-diketoacids to 4,5-dihydroxypyrimidine- or 3-methyl-5-hydroxypyrimidinonecarboxylic acids. Design and synthesis. J Med Chem. 2004;47(22):5336–5339.
  • Billamboz M, Bailly F, Barreca ML, et al. Design, synthesis, and biological evaluation of a series of 2-hydroxyisoquinoline-1,3(2H,4H)-diones as dual inhibitors of human immunodeficiency virus type 1 integrase and the reverse transcriptase RNase H domain. J Med Chem. 2008;51(24):7717–7730.
  • Billamboz M, Bailly F, Lion C, et al. 2-Hydroxyisoquinoline-1,3(2H,4H)-diones as inhibitors of HIV-1 integrase and reverse transcriptase RNase H domain: influence of the alkylation of position 4. Eur J Med Chem. 2011;46(2):535–546.
  • Billamboz M, Bailly F, Lion C, et al. Magnesium chelating 2-hydroxyisoquinoline-1,3(2H,4H)-diones, as inhibitors of HIV-1 integrase and/or the HIV-1 reverse transcriptase ribonuclease H domain: discovery of a novel selective inhibitor of the ribonuclease H function. J Med Chem. 2011;54(6):1812–1824.
  • Chen Y-L, Tang J, Kesler MJ, et al. The design, synthesis and biological evaluations of C-6 or C-7 substituted 2-hydroxyisoquinoline-1,3-diones as inhibitors of hepatitis C virus. Bioorg Med Chem. 2012;20(1):467–479.
  • Zoidis G, Giannakopoulou E, Stevaert A, et al. Novel indole-flutimide heterocycles with activity against influenza PA endonuclease and hepatitis C virus. Med Chem Commun. 2015;7(3):447–456.
  • Takahashi C, Mikamiyama H, Akiyama T, et al. Substituted polycyclic carbamoyl pyridone derivative prodrug. US8987441B2. 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.