297
Views
16
CrossRef citations to date
0
Altmetric
Review

Ectonucleotidase inhibitors: a patent review (2011-2016)

, , , &
Pages 1291-1304 | Received 01 Mar 2017, Accepted 15 Aug 2017, Published online: 05 Sep 2017

References

  • Fredholm BB, IJzerman AP, Jacobson KA, et al. International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53:527–552.
  • Long X, Mokelke EA, Neeb ZP, et al. Adenosine receptor regulation of coronary blood flow in Ossabaw miniature swine. J Pharmacol Exp Ther. 2010;335:781–787.
  • Jacobson KA, Gao Z-G. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov. 2006;5:247–264.
  • Cohen S, Barer F, Bar-Yehuda S, et al. A3 adenosine receptor allosteric modulator induces an anti-inflammatory effect: in vivo studies and molecular mechanism of action. Mediators Inflamm. 2014;2014:1–9.
  • Akkari R, Burbiel JC, Hockemeyer J, et al. Recent progress in the development of adenosine receptor ligands as antiinflammatory drugs. Curr Top Med Chem. 2006;6:1375–1399.
  • Yang D, Zhang Y, Nguyen HG, et al. The A 2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Invest. 2006;116:1913–1923.
  • Haskó G, Pacher P, Vizi ES, et al. Adenosine receptor signaling in the brain immune system. Trends Pharmacol Sci. 2005;26:511–516.
  • North RA. P2X receptors. Phil Trans R Soc B. 2016;371:20150427. .
  • Keystone EC, Wang MM, Layton M, et al. Clinical evaluation of the efficacy of the P2X7 purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine. Ann Rheum Dis. 2012;71:1630–1635. .
  • Xu B, Stephens A, Kirschenheuter G, et al. Acyclic analogues of adenosine bisphosphates as P2Y receptor antagonists: phosphate substitution leads to multiple pathways of inhibition of platelet aggregation. J Med Chem. 2002;45:5694–5709.
  • Fredholm BB, Abbracchio MP, Burnstock G, et al. Towards a revised nomenclature for P1 and P2 receptors. Trends Pharmacol Sci. 1997;18:79–82.
  • Di Virgilio F, Chiozzi P, Ferrari D, et al. Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood. 2001;97:587–600.
  • Burnstock G, Williams M. P2 purinergic receptors: modulation of cell function and therapeutic potential. J Pharm Exp Ther. 2000;295:862–869.
  • Erb L, Weisman GA. Coupling of P2Y receptors to G proteins and other signaling pathways. Wiley Interdiscip Rev Membr Transp Signal. 2012;1:789–803.
  • von Kügelgen I, Hoffmann K. Pharmacology and structure of P2Y receptors. Neuropharmacology. 2016;104:50–61.
  • Brunschweiger A, Müller CE. P2 receptors activated by uracil nucleotides-an update. Curr Med Chem. 2006;13:289–312.
  • Mansoor, S.E., Lu, W., Oosterheert, W., Shekhar, M., Tajkhorshid, E., Gouaux, E. X-ray structures define human P2X3 receptor gating cycle and antagonist action. Nature. 2016;538:66–71.
  • Zhang D, Gao Z-G, Zhang K, et al. Two disparate ligand-binding sites in the human P2Y1 receptor. Nature. 2015;520:317–321.
  • Zhang J, Zhang K, Gao Z-G, et al. Agonist-bound structure of the human P2Y12 receptor. Nature. 2014;509:119–122.
  • Robson SC, Sévigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal. 2006;2:409.
  • Atkinson B, Dwyer K, Enjyoji K, et al. Ecto-nucleotidases of the CD39/NTPDase family modulate platelet activation and thrombus formation: potential as therapeutic targets. Blood Cells Mol Dis. 2006;36:217–222.
  • Kirley TL, Crawford PA, Smith TM. The structure of the nucleoside triphosphate diphosphohydrolases (NTPDases) as revealed by mutagenic and computational modeling analyses. Purinergic Signal. 2006;2:379. .
  • Goding JW, Grobben B, Slegers H. Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta. 2003;1638:1–19.
  • Bollen M, Gijsbers R, Ceulemans H, et al. Nucleotide pyrophosphatases/phosphodiesterases on the move. Crit Rev Biochem Mol Biol. 2000;35:393–432.
  • Al-Rashida M, Iqbal J. Inhibition of alkaline phosphatase: an emerging new drug target. Mini Rev Med Chem. 2015;15:41–51.
  • Millán JL. Alkaline phosphatases structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal. 2006;2:335–341.
  • M-H LD, Millán JL. Structural evidence of functional divergence in human alkaline phosphatases. J Biol Chem. 2002;277:49808–49814.
  • Stec B, Cheltsov A, Millán JL. Refined structures of placental alkaline phosphatase show a consistent pattern of interactions at the peripheral site. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010;66:866–870.
  • Llinas P, Masella M, Stigbrand T, et al. Structural studies of human alkaline phosphatase in complex with strontium: implication for its secondary effect in bones. Protein Sci. 2006;15:1691–1700.
  • Llinas P, Stura EA, Ménez A, et al. Structural studies of human placental alkaline phosphatase in complex with functional ligands. J Mol Biol. 2005;350:441–451.
  • Zebisch M, Krauss M, Schäfer P, et al. Crystallographic snapshots along the reaction pathway of nucleoside triphosphate diphosphohydrolases. Structure. 2013;21:1460–1475.
  • Zebisch M, Baqi Y, Schäfer P, et al. Crystal structure of NTPDase2 in complex with the sulfoanthraquinone inhibitor PSB-071. J Struct Biol. 2014;185:336–341.
  • Zebisch M, Krauss M, Schäfer P, et al. Crystallographic evidence for a domain motion in rat nucleoside triphosphate diphosphohydrolase (NTPDase) 1. J Mol Biol. 2012;415:288–306.
  • Zebisch M, Sträter N. Structural insight into signal conversion and inactivation by NTPDase2 in purinergic signaling. Proc Natl Acad Sci. 2008;105:6882–6887.
  • Albright RA, Ornstein DL, Cao W, et al. Molecular basis of purinergic signal metabolism by ectonucleotide pyrophosphatase/phosphodiesterases 4 and 1 and implications in stroke. J Biol Chem. 2014;289:3294–3306.
  • Bain G, Shannon KE, Huang F, et al. Selective inhibition of autotaxin is efficacious in mouse models of liver fibrosis. J Pharm Exp Ther. 2017;360:1–13.
  • Stein AJ, Bain G, Prodanovich P, et al. Structural basis for inhibition of human autotaxin by four potent compounds with distinct modes of binding. Mol Pharmacol. 2015;88:982–992.
  • Gorelik A, Liu F, Illes K, et al. Crystal structure of the human alkaline sphingomyelinase provides insights into substrate recognition. J Biol Chem. 2017;292:7087–7094.
  • Knapp K, Zebisch M, Pippel J, et al. Crystal structure of the human ecto-5′-nucleotidase (CD73): insights into the regulation of purinergic signaling. Structure. 2012;20:2161–2173.
  • Heuts DP, Weissenborn MJ, Olkhov RV, et al. Crystal structure of a soluble form of human CD73 with Ecto‐5′‐nucleotidase activity. Chem Bio Chem. 2012;13:2384–2391.
  • Müller CE, Brunschweiger A, Iqbal J, Ectonucleotidase inhibitors patent US20100204182. 2010.
  • al-Rashida M, Iqbal J. Therapeutic potentials of ecto‐nucleoside triphosphate diphosphohydrolase, ecto-nucleotide pyrophosphatase/phosphodiesterase, ecto-5′-nucleotidase, and alkaline phosphatase inhibitors. Med Res Rev. 2014;34:703–743. .
  • Zimmermann H Ecto-nucleotidases. Purinergic and Pyrimidinergic Signalling I: Springer; 2001. p. 209–250.
  • Brunschweiger A, Iqbal J, Umbach F, et al. Selective nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) inhibitors: nucleotide mimetics derived from uridine-5′-carboxamide. J Med Chem. 2008;51:4518–4528.
  • Bhattarai S, Freundlieb M, Pippel J, et al. α, β-methylene-ADP (AOPCP) derivatives and analogues: development of potent and selective ecto-5′-nucleotidase (CD73) inhibitors. J Med Chem. 2015;58:6248–6263.
  • de Mendonça A, Ribeiro J. Endogenous adenosine modulates long-term potentiation in the hippocampus. Neuroscience. 1994;62:385–390.
  • de Mendonca A, Almeida T, Bashir Z, et al. Endogenous adenosine attenuates long-term depression and depotentiation in the CA1 region of the rat hippocampus. Neuropharmacology. 1997;36:161–167.
  • Sebastiao AM, de Mendonca A, Moreira T, et al. Activation of synaptic NMDA receptors by action potential-dependent release of transmitter during hypoxia impairs recovery of synaptic transmission on reoxygenation. J Neurosci. 2001;21:8564–8571.
  • Stone TW, Collis MG, Williams M, et al. Adenosine: some therapeutic applications and prospects. Pharmacological sciences: perspectives for research and therapy in the late 1990s: Springer; 1995. p. 303–309.
  • Zakharenko SS, Blundon JA, Method for improving learning patent WO2016134091. 2016.
  • Mathieu P Ectonucleotidase pyrophosphate/phosphodiesterase-1 (enpp-1) as a target for the treatment of aortic valve stenosis and cardiovascular calcification. Google Patents; 2011.
  • Mathieu P, Ectonucleotidase pyrophosphate/phosphodiestrase-1 (ENPP-1) as a target for the treatment of aortic valve stenosis and cardiovascular calcification patent US8435964. 2013.
  • Zylka MJ. Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol Med. 2011;17:188–196.
  • Zhang B. CD73: a novel target for cancer immunotherapy. Cancer Res. 2010;70:6407–6411.
  • Resta R, Yamashita Y, Thompson LF. Ecto-enzyme and signaling functions of lymphocyte CD 7 3. Immunol Rev. 1998;161:95–109.
  • Allard B, Pommey S, Smyth MJ, et al. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res. 2013;19:5626–5635.
  • Zhang B. CD73 promotes tumor growth and metastasis. Oncoimmunology. 2012;1:67–70.
  • Ohta A, Ohta A, Madasu M, et al. A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments. J Immunol. 2009;183:5487–5493.
  • Stagg J, Divisekera U, Duret H, et al. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res. 2011;71:2892–2900.
  • Chanteux S, Paturel C, Perrot I, et al., Cd73 blockade patent WO2016131950. 2016.
  • Perrot I, Paturel C, Gauthier L, Cd73 blockade patent WO2016055609. 2016.
  • Lonberg N, Korman AJ, Barnhart BC, et al., Antibodies against cd73 and uses thereof patent US20160145350. 2016.
  • Quintana FJ, Mascanfroni ID, Methods and compositions of treating autoimmune diseases patent US20160058792. 2016.
  • Mascanfroni ID, Yeste A, Vieira SM, et al. Efroni S. IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nat Immunol. 2013;14:1054–1063.
  • Mizumoto N, Kumamoto T, Robson SC, et al. CD39 is the dominant Langerhans cell–associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nat Med. 2002;8:358–365.
  • Ohta A, Sitkovsky M. The adenosinergic immunomodulatory drugs. Curr Opin Pharmacol. 2009;9:501–506.
  • Sun X, Wu Y, Gao W, et al. CD39/ENTPD1 expression by CD4+ Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology. 2010;139:1030–1040.
  • Allard B, Longhi MS, Robson SC, et al. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev. 2017;276:121–144.
  • Cividini F, Cros-Perrial E, Pesi R, et al. Cell proliferation and drug sensitivity of human glioblastoma cells are altered by the stable modulation of cytosolic 5′-nucleotidase II. Int J Biochem Cell Biol. 2015;65:222–229.
  • Petter Jordheim L, Chaloin L. Therapeutic perspectives for cN-II in cancer. Curr Med Chem. 2013;20:4292–4303.
  • Cividini F, Filoni DN, Pesi R, et al. IMP–GMP specific cytosolic 5′-nucleotidase regulates nucleotide pool and prodrug metabolism. Biochim Biophys Acta. 2015;1850:1354–1361.
  • Cividini F, Tozzi MG, Galli A, et al. Cytosolic 5ʹ-nucleotidase II interacts with the leucin rich repeat of NLR family member Ipaf. PLoS ONE. 2015;10:e0121525.
  • Chaloin L, Peyrottes S, Lionne C, et al., 5ʹ-nucleotidase inhibitors and therapeutic uses thereof patent WO2015049447. 2015.
  • Chaloin L, Peyrottes S, Lionne C, et al., 5ʹ-nucleotidase inhibitors and therapeutic uses thereof patent US20160272643. 2016.
  • Stone TW, Ceruti S, Abbracchio MP. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Adenosine Recep Health Dis Springer. 2009;193:535–587.
  • Chen J-F, Sonsalla PK, Pedata F, et al. Adenosine A 2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. Prog Neurobiol. 2007;83:310–331.
  • Abbracchio MP, Cattabeni F. Brain adenosine receptors as targets for therapeutic intervention in neurodegenerative diseases. Ann N Y Acad Sci. 1999;890:79–92.
  • Narisawa S, Harmey D, Yadav MC, et al. Novel inhibitors of alkaline phosphatase suppress vascular smooth muscle cell calcification. J Bone Miner Res. 2007;22:1700–1710.
  • Terkeltaub R. Physiologic and pathologic functions of the NPP nucleotide pyrophosphatase/phosphodiesterase family focusing on NPP1 in calcification. Purinergic Signal. 2006;2:371–377.
  • Johnson K, Terkeltaub R. Inorganic pyrophosphate (PPI) in pathologic calcification of articular cartilage. Front Biosci. 2005;10:988–997.
  • Shayhidin EE, Forcellini E, Boulanger MC, et al. Quinazoline-4-piperidine sulfamides are specific inhibitors of human NPP1 and prevent pathological mineralization of valve interstitial cells. Br J Pharmacol. 2015;172:4189–4199.
  • Lecka J, Ben-David G, Simhaev L, et al. Nonhydrolyzable ATP analogues as selective inhibitors of human NPP1: a combined computational/experimental study. J Med Chem. 2013;56:8308–8320.
  • Wang L, Zhou X, Zhou T, et al. Ecto-5′-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. J Cancer Res Clin Oncol. 2008;134:365–372.
  • Yu Y, Wang W, Song L, et al. Ecto-5ʹ-nucleotidase expression is associated with the progression of renal cell carcinoma. Oncol Lett. 2015;9:2485–2494.
  • Haskó G, Csóka B, Németh ZH, et al. A 2B adenosine receptors in immunity and inflammation. Trends Immunol. 2009;30:263–270.
  • Koeppen M, Eckle T, Eltzschig HK. Interplay of hypoxia and A2B adenosine receptors in tissue protection. Adv Pharmacol. 2011;61:145.
  • Ohta A, Sitkovsky M. Extracellular adenosine-mediated modulation of regulatory T cells. Front Immunol. 2014;5:304.
  • Stagg J, Beavis PA, Divisekera U, et al. CD73-deficient mice are resistant to carcinogenesis. Cancer Res. 2012;72:2190–2196.
  • Beavis PA, Divisekera U, Paget C, et al. Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc Natl Acad Sci USA. 2013;110:14711–14716.
  • Hilchey SP, Kobie JJ, Cochran MR, et al. Human follicular lymphoma CD39+-infiltrating T cells contribute to adenosine-mediated T cell hyporesponsiveness. J Immunol. 2009;183:6157–6166.
  • Hausler S, Del Barrio IM, Diessner J, et al. Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion. Am J Transl Res. 2014;6:129–139.
  • Hayes GM, Cairns B, Levashova Z, et al. CD39 is a promising therapeutic antibody target for the treatment of soft tissue sarcoma. Am J Transl Res. 2015;7:1181.
  • Munkonda MN, Pelletier J, Ivanenkov VV, et al. Characterization of a monoclonal antibody as the first specific inhibitor of human NTP diphosphohydrolase-3. Febs J. 2009;276:479–496.
  • Hay CM, Sult E, Huang Q, et al. Targeting CD73 in the tumor microenvironment with MEDI9447. Oncoimmunology. 2016;5:e1208875.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.