195
Views
5
CrossRef citations to date
0
Altmetric
Review

Gelatinase inhibitors: a patent review (2011-2017)

Pages 31-46 | Received 24 Sep 2017, Accepted 23 Oct 2017, Published online: 12 Nov 2017

References

  • Whittaker M, Floyd CD, Brown P, et al. Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev. 1999;99(9):2735–2776.
  • Jobin PG, Butler GS, Overall CM. New intracellular activities of matrix metalloproteinases shine in the moonlight. Biochim Biophys Acta. 2017;1864(11 Pt A):2043–2055.
  • Nambiar J, Bose C, Venugopal M, et al. Anacardic acid inhibits gelatinases through the regulation of Spry2, MMP-14, EMMPRIN and RECK. Exp Cell Res. 2016;349(1):139–151.
  • Vartak DG, Gemeinhart RA. Matrix metalloproteases: underutilized targets for drug delivery. J Drug Target. 2007;15(1):1–20.
  • Shi ZG, Li JP, Shi LL, et al. An updated patent therapeutic agents targeting MMPs. Recent Pat Anticancer Drug Discov. 2012;7(1):74–101.
  • Li X, Wu JF. Recent developments in patent anti-cancer agents targeting the matrix metalloproteinases (MMPs). Recent Pat Anticancer Drug Discov. 2010;5(2):109–141.
  • Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 2016;31(sup1):177–183.
  • Daniele A, Abbate I, Oakley C, et al. Clinical and prognostic role of matrix metalloproteinase-2, −9 and their inhibitors in breast cancer and liver diseases: a review. Int J Biochem Cell Biol. 2016;77(Pt A):91–101.
  • Fu Z, Xu S, Xu Y, et al. The expression of tumor-derived and stromal-derived matrix metalloproteinase 2 predicted prognosis of ovarian cancer. Int J Gynecol Cancer. 2015;25(3):356–362.
  • Rempe RG, Hartz AM, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J Cereb Blood Flow Metab. 2016;36(9):1481–1507.
  • Zheng H, Takahashi H, Murai Y, et al. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res. 2006;26(5A):3579–3583.
  • Chen J, Xu W, Chen Y, et al. Matrix metalloproteinase 9 facilitate hepatitis B virus replication through binding with type 1 interferon (IFN) receptor 1 to repress IFN/JAK/STAT signaling. J Virol. 2017;91(8):pii: e01824–16.
  • Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–573.
  • Hashimoto H, Takeuchi T, Komatsu K, et al. Structural basis for matrix metalloproteinase-2 (MMP-2)-selective inhibitory action of β-amyloid precursor protein-derived inhibitor. J Biol Chem. 2011;286(38):33236–33243.
  • Yang L, Wang P, Wu JF, et al. Design, synthsesis and anti-HIV-1 evaluation of hydrazide-based peptidomimetics as selective gelatinase inhibitors. Bioorg Med Chem. 2016;24(9):2125–2136.
  • Shi L, Wang Q, Wang H, et al. Sulphonamide 1,4-dithia-7-azaspiro [4,4]nonane derivatives as gelatinase A inhibitors. Bioorg Med Chem. 2013;21(14):7752–7762.
  • Li X, Li Y, Xu W. Design, synthesis and evaluation of novel galloyl pyrrolidine derivatives as potential anti-tumor agents. Bioorg Med Chem. 2006;14(5):1287–1293.
  • Van Wart HE, Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA. 1990;87(14):5578–5582.
  • Feng Y, Likos JJ, Zhu L, et al. Solution structure and backbone dynamics of the catalytic domain of matrix metalloproteinase-2 complexed with a hydroxamic acid inhibitor. Biochim Biophys Acta. 2002;1598(1–2):10–23.
  • Devel L, Czarny B, Beau F, et al. Gain in selectivity by targeting the depth of the S1’ cavity. Biochimie. 2010;92(11):1501–1508.
  • Kalva S, Azhagiya Singam ER, Rajapandian V, et al. Discovery of potent inhibitor for matrix metalloproteinase-9 by pharmacophore based modeling and dynamics simulation studies. J Mol Graph Model. 2014;49:25–37.
  • Adhikari N, Mukherjee A, Saha A, et al. Arylsulfonamides and selectivity of matrix metalloproteinase-2: an overview. Eur J Med Chem. 2017;129:72–109.
  • Jacobsen JA, Jourden JM, Miller MT, et al. To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim Biophys Acta. 2010;1803(1):72–94.
  • Zhong HA, Arbiser J, Bowen JP. Selectivity, binding affinity, and ionization state of matrix metalloproteinase inhibitors. Curr Pharm Des. 2013;19(26):4701–4713.
  • Santamaria S, Nuti E, Cercignani G, et al. Kinetic characterization of 4,4’-biphenylsulfonamides as selective non-zinc binding MMP inhibitors. J Enzyme Inhib Med Chem. 2015;30(6):947–954.
  • Di Pizio A, Laghezza A, Tortorella P, et al. Probing the S1’ site for the identification of non-zinc-binding MMP-2 inhibitors. ChemMedChem. 2013;8(9):1475–1482.
  • Marusak C, Bayles I, Ma J, et al. The thiirane-based selective MT1-MMP/MMP2 inhibitor ND-322 reduces melanoma tumor growth and delays metastatic dissemination. Pharmacol Res. 2016;113(Pt A):515–520.
  • Rimbach G, Fischer A, Schloesser A, et al. Inflammatory properties of brazilian green propolis encapsulated in a γ-cyclodextrin complex in mice fed a western-type diet. Int J Mol Sci. 2017;18(6):pii:E1141.
  • Takahashi H, Nguyen BCQ, Uto Y, et al. 1,2,3-Triazolyl esterization of PAK1-blocking propolis ingredients, artepillin C (ARC) and caffeic acid (CA), for boosting their anti-cancer/anti-PAK1 activities along with cell-permeability. Drug Discov Ther. 2017;11(2):104–109.
  • Li YL, Xu WF. Design, synthesis, and activity of caffeoyl pyrrolidine derivatives as potential gelatinase inhibitors. Bioorg Med Chem. 2004;12(19):5171–5180.
  • Li X, Wang J, Li J, et al. Novel aminopeptidase N inhibitors derived from antineoplaston AS2-5 (Part I). Bioorg Med Chem. 2009;17(8):3053–3060.
  • Li X, Wang Y, Wu J, et al. Novel aminopeptidase N inhibitors derived from antineoplaston AS2-5 (Part II). Bioorg Med Chem. 2009;17(8):3061–3071.
  • Demestre M, Messerli SM, Celli N, et al. CAPE (caffeic acid phenethyl ester)-based propolis extract (Bio 30) suppresses the growth of human neurof ibromatosis (NF) tumor xenografts in mice. Phytother Res. 2009;23(2):226–230.
  • Toshifumi A, Masaharu Y Matrix metalloproteinase inhibitor. JP4847696. 2011.
  • Shan Y, Feng X, Chen Y, et al. A chlorogenic acid ester saponins and its preparation method. CN102408465. 2012.
  • Zhu HL, Yan XQ, Wang PF, et al. Method for the synthesis of naphthalene-based dihydropyrazolamide derivatives and applications in preparing the antitumor drugs. CN104230904. 2014.
  • Yan XQ, Wang ZC, Li Z, et al. Sulfonamide derivatives containing dihydropyrazole moieties selectively and potently inhibit MMP-2/MMP-9: design, synthesis, inhibitory activity and 3D-QSAR analysis. Bioorg Med Chem Lett. 2015;25(20):4664–4671.
  • Siennicka A, Zuchowski M, Kaczmarczyk M, et al. Spatial differences of matrix metalloproteinase-2 and matrix metalloproteinase-9 within abdominal aortic aneurysm wall and intraluminal thrombus. J Physiol Pharmacol. 2016;67(6):903–910.
  • Rabkin SW. The role matrix metalloproteinases in the production of aortic aneurysm. Prog Mol Biol Transl Sci. 2017;147:239–265.
  • Wood AJJ. Method for the treatment of aneurismal dilatation, blood vessel wall weakness, particular the abdominal aortic aneurysms and thoracic aortic aneurysms. CN102639134. 2012.
  • Limtrakul P, Yodkeeree S, Thippraphan P, et al. Anti-aging and tyrosinase inhibition effects of Cassia fistula flower butanolic extract. BMC Complement Altern Med. 2016;16(1):497.
  • Jiang XM, Guo YX, Wen GQ Application of caffeoyl amide derivatives. CN104274433. 2015.
  • Lu L, Li X, Xu P, et al. Tenuigenin down-regulates the release of nitric oxide, matrix metalloproteinase-9 and cytokines from lipopolysaccharide-stimulated microglia. Neurosci Lett. 2017;650:82–88.
  • Wang XM, Lu L The application of tenuigenin in the preparation of MMP inhibitors. CN102697794. 2012.
  • Shan Y, Feng X, Guang FQ, et al. Novel Lonicera macranthoides saponin, method for preparing same and therapeutic use thereof. CN102424699. 2012.
  • Gooyit M, Lee M, Hesek D, et al. Synthesis, kinetic characterization and metabolism of diastereomeric 2-(1-(4-phenoxyphenylsulfonyl)ethyl) thiiranes as potent gelatinase and MT1-MMP inhibitors. Chem Biol Drug Des. 2009;74(6):535–546.
  • Gooyit M, Song W, Mahasenan KV, et al. O-phenyl carbamate and phenyl urea thiiranes as selective matrix metalloproteinase-2 inhibitors that cross the blood-brain barrier. J Med Chem. 2013;56(20):8139–8150.
  • Wilkes DS Compounds and methods for inhibiting MMP2 and MMP9. CN102341106. 2012.
  • Ghose AK, Herbertz T, Hudkins RL, et al. Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci. 2012;3(1):50–68.
  • Arranz-Gibert P, Guixer B, Malakoutikhah M, et al. Lipid bilayer crossing--the gate of symmetry. Water-soluble phenylproline-based blood-brain barrier shuttles. J Am Chem Soc. 2015;137(23):7357–7364.
  • Chang M, Mobashery S, Lee M Gelatinase inhibitors and prodrugs. WO2011109767. 2011.
  • Chang M, Mobashery S, Lee M Selective matrix metalloproteinase inhibitors. WO2015127302. 2015.
  • Stankovic M, Kojic S, Djordjevic V, et al. Gene-environment interaction between the MMP9 C-1562T promoter variant and cigarette smoke in the pathogenesis of chronic obstructive pulmonary disease. Environ Mol Mutagen. 2016;57(6):447–454.
  • Hsu AT, Barrett CD, DeBusk GM, et al. Kinetics and role of plasma matrix metalloproteinase-9 expression in acute lung injury and the acute respiratory distress syndrome. Shock. 2015;44(2):128–136.
  • Pemberton PA, Cantwell JS, Kim KM, et al. An inhaled matrix metalloprotease inhibitor prevents cigarette smoke-induced emphysema in the mouse. Copd. 2005;2(3):303–310.
  • Liu KL, Han H, Zhao J, et al. Matrix metalloproteinase inhibitors and the applications thereof. CN103435514. 2013.
  • Minatoguchi S, Ohno Y, Yabuuchi Y, et al. MMP-2 and/or MMP-9 inhibitor. US20110054179. 2011.
  • Huang RZ, Liang GB, Huang XC, et al. Discovery of dehydroabietic acid sulfonamide based derivatives as selective matrix metalloproteinases inactivators that inhibit cell migration and proliferation. Eur J Med Chem. 2017;138:979–992.
  • Ehrhardt C, Mcquire LW, Rigollier P, et al. Arylsulfonamide-based matrix metalloproteinase inhibitors. CN102036953. 2011.
  • Khera MK, Sattigeri J, Sattigeri V, et al. Matrix metalloproteinase inhibitors. WO2012014114. 2013.
  • Khera MK, Soni A, Sattigeri J, et al. Matrix metalloproteinase inhibitors. WO2012038942. 2013.
  • Khera MK, Palle VP, Sattigeri V, et al. Matrix metalloproteinase inhibitors. WO2012038944. 2013.
  • Khera MK, Sattigeri J, Sattigeri J, et al. Matrix metalloproteinase inhibitors. WO2012038943. 2013.
  • Ferdinandy P, Csont TB, Csonka C, et al. Novel inhibitors of matrix metalloproteinases. WO2012080762. 2013.
  • Liu J, Khalil RA. Matrix metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. Prog Mol Biol Transl Sci. 2017;148:355–420.
  • Ghosh AK, Anderson DD, Weber IT, et al. Enhancing protein backbone binding--a fruitful concept for combating drug-resistant HIV. Angew Chem Int Ed Engl. 2012;51(8):1778–1802.
  • Li Y, Zhang J, Xu W, et al. Novel matrix metalloproteinase inhibitors derived from quinoxalinone scaffold (Part I). Bioorg Med Chem. 2010;18(4):1516–1525.
  • Fabre B, Ramos A, De Pascual-Teresa B. Targeting matrix metalloproteinases: exploring the dynamics of the S1’ pocket in the design of selective, small molecule inhibitors. J Med Chem. 2014;57(24):10205–10219.
  • Gooyit M, Lee M, Hesek D, et al. Synthesis, kinetic characterization and metabolism of diastereomeric 2-(1-(4-phenoxyphenylsulfonyl)ethyl)thiiranes as potent gelatinase and MT1-MMP inhibitors. Chem Biol Drug Des. 2009;74(6):535–546.
  • Cathcart J, Pulkoski-Gross A, Cao J. Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Dis. 2015;2(1):26–34.
  • Overall CM, Kleifeld O. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer. 2006;6(3):227–239.
  • Sarper M, Allen MD, Gomm J, et al. Loss of MMP-8 in ductal carcinoma in situ (DCIS)-associated myoepithelial cells contributes to tumour promotion through altered adhesive and proteolytic function. Breast Cancer Res. 2017;19(1):33.
  • Gooyit M, Peng Z, Wolter WR, et al. A chemical biological strategy to facilitate diabetic wound healing. ACS Chem Biol. 2014;9(1):105–110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.