798
Views
33
CrossRef citations to date
0
Altmetric
Review

Serine protease inhibitors to treat inflammation: a patent review (2011-2016)

&
Pages 93-110 | Received 30 Sep 2017, Accepted 14 Nov 2017, Published online: 05 Dec 2017

References

  • Page MJ, Di Cera E. Serine peptidases: classification, structure and function. Cell Mol Life Sci. 2008;65(7–8):1220–1236.
  • Di Cera E. Serine proteases. IUBMB Life. 2009 May;61(5):510–515.
  • Turk B. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov. 2006;5(9):785–799.
  • Prassas I, Eissa A, Poda G, et al. Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat Rev Drug Discov. 2015;14(3):183–202.
  • Drag M, Salvesen GS. Emerging principles in protease-based drug discovery. Nat Rev Drug Discov. 2010;9(9):690–701.
  • Ursu O, Holmes J, Knockel J, et al. DrugCentral: online drug compendium. Nucleic Acids Res. 2017;45(D1):D932–D939.
  • Zhong J, Groutas WC. Recent developments in the design of mechanism-based and alternate substrate inhibitors of serine proteases. Curr Top Med Chem. 2004;4(12):1203–1216.
  • Liang G, Bowen JP. Development of trypsin-like serine protease inhibitors as therapeutic agents: opportunities, challenges, and their unique structure-based rationales. Curr Top Med Chem. 2016;16(13):1506–1529.
  • Krowarsch D, Cierpicki T, Jelen F, et al. Canonical protein inhibitors of serine proteases. Cell Mol Life Sci. 2003;60(11):2427–2444.
  • Waldner BJ, Fuchs JE, Schauperl M, et al. Protease inhibitors in view of peptide substrate databases. J Chem Inf Model. 2016;56(6):1228–1235.
  • Turk B, Turk D, Turk V. Protease signalling: the cutting edge. Embo J. 2012;31(7):1630–1643.
  • Heutinck KM, Ten Berge IJ, Hack CE, et al. Serine proteases of the human immune system in health and disease. Mol Immunol. 2010;47(11–12):1943–1955.
  • Sharony R, Yu PJ, Park J, et al. Protein targets of inflammatory serine proteases and cardiovascular disease. J Inflamm (Lond). 2010;7:45.
  • Schranz J, Adelman B, Chyung Y. Plasma kallikrein inhibitors and uses thereof for treating hereditary angioedema attack patent WO2017100679A1. 2017.
  • Meyer-Hoffert U. Reddish, scaly, and itchy: how proteases and their inhibitors contribute to inflammatory skin diseases. Arch Immunol Ther Exp (Warsz). 2009;57(5):345–354.
  • Two AM, Hata TR, Nakatsuji T, et al. Reduction in serine protease activity correlates with improved rosacea severity in a small, randomized pilot study of a topical serine protease inhibitor. J Invest Dermatol. 2014;134(4):1143–1145.
  • De Veer SJ, Furio L, Harris JM, et al. Proteases: common culprits in human skin disorders. Trends Mol Med. 2014;20(3):166–178.
  • De Veer SJ, Furio L, Harris JM, et al. Proteases and proteomics: cutting to the core of human skin pathologies. Proteomics Clin Appl. 2014;8(5–6):389–402.
  • Rawlings ND, Barrett AJ, Bateman A. Using the MEROPS database for proteolytic enzymes and their inhibitors and substrates. Curr Protoc Bioinformatics. 2014;12(48):1–33.
  • Schechter I, Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967;27(2):157–162.
  • Hedstrom L. Serine protease mechanism and specificity. Chem Rev. 2002;102(12):4501–4524.
  • Hedstrom L. An overview of serine proteases. Curr Protoc Protein Sci. 2002; Chapter 21: Unit 21 10.
  • Harris JL, Backes BJ, Leonetti F, et al. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci U S A. 2000;97(14):7754–7759.
  • Sanman LE, Bogyo M. Activity-based profiling of proteases. Annu Rev Biochem. 2014;83:249–273.
  • Kasperkiewicz P, Poreba M, Groborz K, et al. Emerging challenges in the design of selective substrates, inhibitors and activity-based probes for indistinguishable proteases. Febs J. 2017;284(10):1518–1539.
  • Edgington-Mitchell LE, Barlow N, Aurelio L, et al. Fluorescent diphenylphosphonate-based probes for detection of serine protease activity during inflammation. Bioorg Med Chem Lett. 2017;27(2):254–260.
  • Kasperkiewicz P, Altman Y, D’Angelo M, et al. Toolbox of fluorescent probes for parallel imaging reveals uneven location of serine proteases in neutrophils. J Am Chem Soc. 2017;139(29):10115–10125.
  • Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140(6):771–776.
  • Scrivo R, Vasile M, Bartosiewicz I, et al. Inflammation as “common soil” of the multifactorial diseases. Autoimmun Rev. 2011 May;10(7):369–374.
  • Mancek-Keber M. Inflammation-mediating proteases: structure, function in (patho) physiology and inhibition. Protein Pept Lett. 2014;21(12):1209–1229.
  • Ramachandran R, Altier C, Oikonomopoulou K, et al. Proteinases, their extracellular targets, and inflammatory signaling. Pharmacol Rev. 2016;68(4):1110–1142.
  • Hollenberg MD, Mihara K, Polley D, et al. Biased signalling and proteinase-activated receptors (PARs): targeting inflammatory disease. Br J Pharmacol. 2014;171(5):1180–1194.
  • Pham CT. Neutrophil serine proteases fine-tune the inflammatory response. Int J Biochem Cell Biol. 2008;40(6–7):1317–1333.
  • Abbenante G, Fairlie DP. Protease inhibitors in the clinic. Med Chem. 2005;1(1):71–104.
  • Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol. 2014;14(5):289–301.
  • Malik K, Heitmiller KD, Czarnowicki T. An update on the pathophysiology of atopic dermatitis. Dermatol Clin. 2017 Jul;35(3):317–326.
  • Vavrova K. Emerging small-molecule compounds for treatment of atopic dermatitis: a review. Expert Opin Ther Pat. 2016;26(1):21–34.
  • Sidbury R, Khorsand K. Evolving concepts in atopic dermatitis. Curr Allergy Asthma Rep. 2017;17(7):42.
  • Bieber T. Atopic dermatitis. Ann Dermatol. 2010;22(2):125–137.
  • Bieber T. How to define atopic dermatitis? Dermatol Clin. 2017;35(3):275–281.
  • Parisi R, Symmons DP, Griffiths CE, et al. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013 Feb;133(2):377–385. PubMed PMID: 23014338. DOI:10.1038/jid.2012.339
  • Springate DA, Parisi R, Kontopantelis E, et al. Incidence, prevalence and mortality of patients with psoriasis: a U.K. population-based cohort study. Br J Dermatol. 2017;176(3):650–658.
  • Guttman-Yassky E, Krueger JG, Lebwohl MG. Systemic immune mechanisms in atopic dermatitis and psoriasis with implications for treatment. Exp Dermatol. 2017 Mar 07.
  • Zhu Y, Underwood J, Macmillan D, et al. Persistent kallikrein 5 activation induces atopic dermatitis-like skin architecture independent of PAR2 activity. J Allergy Clin Immunol. 2017;140:1310–1322.
  • Morizane S, Yamasaki K, Kajita A, et al. TH2 cytokines increase kallikrein 7 expression and function in patients with atopic dermatitis. J Allergy Clin Immunol. 2012;130(1):259–261 e1.
  • Two AM, Wu W, Gallo RL, et al. Rosacea: part II. Topical and systemic therapies in the treatment of rosacea. J Am Acad Dermatol. 2015;72(5):761–770; quiz 771–772.
  • Two AM, Wu W, Gallo RL, et al. Rosacea: part I. Introduction, categorization, histology, pathogenesis, and risk factors. J Am Acad Dermatol. 2015;72(5):749–758; quiz 759–760.
  • Yamasaki K, Di Nardo A, Bardan A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med. 2007;13(8):975–980.
  • Takahashi T, Gallo RL. The critical and multifunctional roles of antimicrobial peptides in dermatology. Dermatol Clin. 2017;35(1):39–50.
  • Yamasaki K, Gallo RL. The molecular pathology of rosacea. J Dermatol Sci. 2009;55(2):77–81.
  • Hovnanian A. Netherton syndrome: skin inflammation and allergy by loss of protease inhibition. Cell Tissue Res. 2013;351(2):289–300.
  • Furio L, Hovnanian A. Netherton syndrome: defective kallikrein inhibition in the skin leads to skin inflammation and allergy. Biol Chem. 2014;395(9):945–958.
  • Leclerc-Mercier S, Bodemer C, Furio L, et al. Skin biopsy in netherton syndrome: a histological review of a large series and new findings. Am J Dermatopathol. 2016;38(2):83–91.
  • Bonnart C, Deraison C, Lacroix M, et al. Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in Netherton syndrome through filaggrin and lipid misprocessing. J Clin Invest. 2010;120(3):871–882.
  • Briot A, Deraison C, Lacroix M, et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med. 2009;206(5):1135–1147.
  • Briot A, Lacroix M, Robin A, et al. Par2 inactivation inhibits early production of TSLP, but not cutaneous inflammation, in Netherton syndrome adult mouse model. J Invest Dermatol. 2010;130(12):2736–2742.
  • Descargues P, Deraison C, Bonnart C, et al. Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet. 2005;37(1):56–65.
  • Fortugno P, Bresciani A, Paolini C, et al. Proteolytic activation cascade of the Netherton syndrome-defective protein, LEKTI, in the epidermis: implications for skin homeostasis. J Invest Dermatol. 2011;131(11):2223–2232.
  • Reindl J, Pesek J, Kruger T, et al. Proteomic biomarkers for psoriasis and psoriasis arthritis. J Proteomics. 2016;140:55–61.
  • Elias MS, Long HA, Newman CF, et al. Proteomic analysis of filaggrin deficiency identifies molecular signatures characteristic of atopic eczema. J Allergy Clin Immunol. 2017;140:1299–1309.
  • Kasparek P, Ileninova Z, Zbodakova O, et al. KLK5 and KLK7 ablation fully rescues lethality of netherton syndrome-like phenotype. PLoS Genet. 2017;13(1):e1006566.
  • West JB. Respiratory physiology: the essentials. Lippincott Williams & Wilkins; 2012.
  • Moldoveanu B, Otmishi P, Jani P, et al. Inflammatory mechanisms in the lung. J Inflamm Res. 2009;2:1–11.
  • Eapen MS, Myers S, Walters EH, et al. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox. Expert Rev Respir Med. 2017;11:827–839.
  • Kettritz R. Neutral serine proteases of neutrophils. Immunol Rev. 2016;273(1):232–248.
  • Vergnolle N. Protease inhibition as new therapeutic strategy for GI diseases. Gut. 2016;65(7):1215–1224.
  • Kamm MA. Rapid changes in epidemiology of inflammatory bowel disease. Lancet. 2017 Oct 13.
  • Biancheri P, Di Sabatino A, Corazza GR, et al. Proteases and the gut barrier. Cell Tissue Res. 2013;351(2):269–280.
  • Van Spaendonk H, Ceuleers H, Witters L, et al. Regulation of intestinal permeability: the role of proteases. World J Gastroenterol. 2017;23(12):2106–2123.
  • Steck N, Mueller K, Schemann M, et al. Bacterial proteases in IBD and IBS. Gut. 2012;61(11):1610–1618.
  • Ceuleers H, Segaert E, Heirbaut J, et al. Su1937 two serine protease inhibitors, nafamostat mesylate and the newly developed SPIx, decrease post-inflammatory visceral hypersensitivity in rats. Gastroenterology. 2016;150(4):S593–S594.
  • Van Spaendonk H, Nullens S, Ceuleers H, et al. Tu1883 the effect of a protease inhibitor in a chronic colitis transfer model. Gastroenterology. 2016;150(4):S967.
  • Clements J, Hooper J, Dong Y, et al. The expanded human kallikrein (KLK) gene family: genomic organisation, tissue-specific expression and potential functions. Biol Chem. 2001;382(1):5–14.
  • Lundwall A, Band V, Blaber M, et al. A comprehensive nomenclature for serine proteases with homology to tissue kallikreins. Biol Chem. 2006;387(6):637–641.
  • Paliouras M, Diamandis EP. The kallikrein world: an update on the human tissue kallikreins. Biol Chem. 2006;387(6):643–652.
  • Emami N, Diamandis EP. New insights into the functional mechanisms and clinical applications of the kallikrein-related peptidase family. Mol Oncol. 2007 Dec;1(3):269–287.
  • Emami N, Diamandis EP. Human tissue kallikreins: a road under construction. Clin Chim Acta. 2007;381(1):78–84.
  • Kalinska M, Meyer-Hoffert U, Kantyka T, et al. Kallikreins - the melting pot of activity and function. Biochimie. 2016;122:270–282.
  • Lizama AJ, Andrade Y, Colivoro P, et al. Expression and bioregulation of the kallikrein-related peptidases family in the human neutrophil. Innate Immun. 2015;21(6):575–586.
  • Bjorkqvist J, Jamsa A, Renne T. Plasma kallikrein: the bradykinin-producing enzyme. Thromb Haemost. 2013;110(3):399–407.
  • Weidmann H, Heikaus L, Long AT, et al. The plasma contact system, a protease cascade at the nexus of inflammation, coagulation and immunity. Biochim Biophys Acta. 2017;1864:2118–2127.
  • Okada Y, Tsuda Y, Tada M, et al. Development of plasma kallikrein selective inhibitors. Biopolymers. 1999;51(1):41–50.
  • Sotiropoulou G, Pampalakis G. Targeting the kallikrein-related peptidases for drug development. Trends Pharmacol Sci. 2012;33(12):623–634.
  • Masurier N, Arama DP, El Amri C, et al. Inhibitors of kallikrein-related peptidases: an overview. Med Res Rev. 2017 Jun 13.
  • Goettig P, Magdolen V, Brandstetter H. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie. 2010 Nov;92(11):1546–1567.
  • Von Nussbaum F, Li VM. Neutrophil elastase inhibitors for the treatment of (cardio)pulmonary diseases: into clinical testing with pre-adaptive pharmacophores. Bioorg Med Chem Lett. 2015;25(20):4370–4381.
  • Henriksen PA. The potential of neutrophil elastase inhibitors as anti-inflammatory therapies. Curr Opin Hematol. 2014;21(1):23–28.
  • Benarafa C, Simon HU. Role of granule proteases in the life and death of neutrophils. Biochem Biophys Res Commun. 2017;482(3):473–481.
  • Pham CT. Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol. 2006;6(7):541–550.
  • Meyer-Hoffert U, Wiedow O. Neutrophil serine proteases: mediators of innate immune responses. Curr Opin Hematol. 2011;18(1):19–24.
  • Wiedow O, Meyer-Hoffert U. Neutrophil serine proteases: potential key regulators of cell signalling during inflammation. J Intern Med. 2005;257(4):319–328.
  • Ramachandran R, Mihara K, Chung H, et al. Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2). J Biol Chem. 2011;286(28):24638–24648.
  • Belaaouaj A, McCarthy R, Baumann M, et al. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med. 1998;4(5):615–618.
  • Tsai YF, Hwang TL. Neutrophil elastase inhibitors: a patent review and potential applications for inflammatory lung diseases (2010-2014). Expert Opin Ther Pat. 2015;25(10):1145–1158.
  • Twigg MS, Brockbank S, Lowry P, et al. The role of serine proteases and antiproteases in the cystic fibrosis lung. Mediators Inflamm. 2015;2015:293053.
  • Hagiwara S, Iwasaka H, Hidaka S, et al. Neutrophil elastase inhibitor (sivelestat) reduces the levels of inflammatory mediators by inhibiting NF-kB. Inflamm Res. 2009;58(4):198–203.
  • Hagiwara S, Iwasaka H, Togo K, et al. A neutrophil elastase inhibitor, sivelestat, reduces lung injury following endotoxin-induced shock in rats by inhibiting HMGB1. Inflammation. 2008;31(4):227–234.
  • Yoshimura Y, Hiramatsu Y, Sato Y, et al. ONO-6818, a novel, potent neutrophil elastase inhibitor, reduces inflammatory mediators during simulated extracorporeal circulation. Ann Thorac Surg. 2003;76(4):1234–1239.
  • Lee JM, Yeo CD, Lee HY, et al. Inhibition of neutrophil elastase contributes to attenuation of lipopolysaccharide-induced acute lung injury during neutropenia recovery in mice. J Anesth. 2017;31(3):397–404.
  • Stevens T, Ekholm K, Granse M, et al. AZD9668: pharmacological characterization of a novel oral inhibitor of neutrophil elastase. J Pharmacol Exp Ther. 2011;339(1):313–320.
  • Kuna P, Jenkins M, O’Brien CD, et al. AZD9668, a neutrophil elastase inhibitor, plus ongoing budesonide/formoterol in patients with COPD. Respir Med. 2012;106(4):531–539.
  • Muley MM, Reid AR, Botz B, et al. Neutrophil elastase induces inflammation and pain in mouse knee joints via activation of proteinase-activated receptor-2. Br J Pharmacol. 2016;173(4):766–777.
  • Muley MM, Krustev E, Reid AR, et al. Prophylactic inhibition of neutrophil elastase prevents the development of chronic neuropathic pain in osteoarthritic mice. J Neuroinflammation. 2017;14(1):168.
  • Bao Y, Hou W, Hua B. Protease-activated receptor 2 signalling pathways: a role in pain processing. Expert Opin Ther Targets. 2014;18(1):15–27.
  • Castellino FJ, Ploplis VA. Structure and function of the plasminogen/plasmin system. Thromb Haemost. 2005;93(4):647–654.
  • Law RHP, Caradoc-Davies T, Cowieson N, et al. The X-ray crystal structure of full-length human plasminogen. Cell Rep. 2012;1(3):185–190.
  • Law RHP, Abu-Ssaydeh D, Whisstock JC. New insights into the structure and function of the plasminogen/plasmin system. Curr Opin Struct Biol. 2013;23(6):836–841.
  • Wang X, Lin X, Loy JA, et al. Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science. 1998;281(5383):1662–1665.
  • Wang X, Terzyan S, Tang J, et al. Human plasminogen catalytic domain undergoes an unusual conformational change upon activation. J Mol Biol. 2000;295(4):903–914.
  • Hervio LS, Coombs GS, Bergstrom RC, et al. Negative selectivity and the evolution of protease cascades: the specificity of plasmin for peptide and protein substrates. Chem Biol. 2000;7(6):443–453.
  • Foley JH. Plasmin(ogen) at the nexus of fibrinolysis, inflammation, and complement. Semin Thromb Hemost. 2017;43(2):135–142.
  • Draxler DF, Sashindranath M, Medcalf RL. Plasmin: a modulator of immune function. Semin Thromb Hemost. 2017;43(2):143–153.
  • Shimazu H, Munakata S, Tashiro Y, et al. Pharmacological targeting of plasmin prevents lethality in a murine model of macrophage activation syndrome. Blood. 2017;130:59–72.
  • Hamilton JA. Plasminogen activator/plasmin system in arthritis and inflammation: friend or foe? Arthritis Rheum. 2008;58(3):645–648.
  • Al-Horani RA, Desai UR. Recent advances on plasmin inhibitors for the treatment of fibrinolysis-related disorders. Med Res Rev. 2014;34(6):1168–1216.
  • Swedberg JE, Harris JM. Plasmin substrate binding site cooperativity guides the design of potent peptide aldehyde inhibitors. Biochemistry. 2011;50(39):8454–8462.
  • Swedberg JE, Harris JM. Natural and engineered plasmin inhibitors: applications and design strategies. Chembiochem. 2012;13(3):336–348.
  • Edwards HJ, Evans DM, Davie RM, et al. Bicyclic inhibitors patent WO 2015022547 A1. 2015.
  • Smith AL, Novak AR, Evans DM, et al. N-((heteroarylmethyl)-heteroaryl-carboxamide derivatives as plasma kallikrein inhibitors patent WO 2016083816 A1. 2016.
  • Evans DM, Davie RL, Edwards HJ, et al. Benzylamine derivatives as inhibitors of plasma kallikrein patent US 9051249 B2. 2015.
  • Northen JS, Mykytiuk J. Polymorphs of N-[(R)-1-[(S)-1-(4-aminomethyl-benzylcarbamoyl)-2-phenyl-ethylcarbamoyl]-2-(4-ethoxy-phenyl)-ethyl]-benzamide hydrochloride patent US 9512065 B2. 2016.
  • Davie RL, Edwards HJ, Evans DM, et al. inventorHeterocyclic derivates patent US 9533987 B2. 2017.
  • Allan CE, Batt AR, Davie RL, et al. Benzylamine derivatives patent US 9670157 B2. 2017.
  • Kotian PL, Babu YS, Kumar VS, et al. inventorHuman plasma kallikrein inhibitors patent WO 2017059178 A1. 2017.
  • Wang Z, Ye P, Alonso R, et al. Peptide and peptidomimetic inhibitors patent US20170189470A1. 2017.
  • Chrusciel RA, Gadwood RC, Hayward NJ, et al. inventorTherapeutic compounds and compositions patent US 20170037003 A1. 2017.
  • Teufel D, Stace C, Walker E. Benzylamine derivatives as inhibitors of plasma kallikrein patent US 20160222063 A1. 2016.
  • Teufel D, Stace C, Walker E. Novel polypeptides patent US 20160222063 A1. 2016.
  • Flohr S, Markert C, Namoto K, et al. 5-membered heteroarylcarboxamide derivatives as plasma kallikrein inhibitors patent WO 2013111108 A1. 2013.
  • Markland WR. Kallikrein-binding “kunitz domain” proteins and analogues thereof patent US 20120328517 A1. 2012.
  • Scott CJ, Taggart CC. Biologic protease inhibitors as novel therapeutic agents. Biochimie. 2010;92(11):1681–1688.
  • Krantz A. A classification of enzyme inhibitors. Bioorg Med Chem Lett. 1992;2(11):1327–1334.
  • Kolte D, Bryant J, Holsworth D, et al. Biochemical characterization of a novel high-affinity and specific plasma kallikrein inhibitor. Br J Pharmacol. 2011;162(7):1639–1649.
  • Kolte D, Bryant JW, Gibson GW, et al. PF-04886847 (an inhibitor of plasma kallikrein) attenuates inflammatory mediators and activation of blood coagulation in rat model of lipopolysaccharide (LPS)-induced sepsis. Cardiovasc Hematol Agents Med Chem. 2012;10(2):154–166.
  • Kolte D, Shariat-Madar Z. Plasma kallikrein inhibitors in cardiovascular disease: an innovative therapeutic approach. Cardiol Rev. 2016;24(3):99–109.
  • Frattini S, Bakker R, Giovannini R, et al. Heteroarylcarboxamide derivatives as plasma kallikrein inhibitors patent WO 2017072020 A1. 2017.
  • Li Z, Partridge J, Silva-Garcia A, et al. Structure-guided design of novel, potent, and selective macrocyclic plasma kallikrein inhibitors. ACS Med Chem Lett. 2017;8(2):185–190.
  • Reboud-Ravaux M, El Amri C, Tan X, et al. Use of coumarin derivatives for the preparation of drugs for treating skin diseases patent WO 2013010963 A1. 2013.
  • Short KM, Pham SM, Williams DC, et al. Multisubstituted aromatic compounds as serine protease inhibitors patent US 20170065570 A1. 2017.
  • Harris JM, De Veer SJ, Swedberg JE. Serine protease inhibitors patent WO 2012083385 A1. 2012.
  • Wang FY, Tan X, Wang D, et al. Kallikrein 7 small-molecule inhibitor and preparation method and purpose thereof patent CN 106518880 A. 2017.
  • Short KM, Ben Kita D, De Los Angeles Estiarte-Martinez M, et al. Pyrazolyl-substituted pyridone compounds as serine protease inhibitors patent WO 2016044662 A1. 2016.
  • Wang FY, Tan X, Wang D, et al. Kallikrein KLK7 inhibiting compound and preparation method and application thereof patent CN 105330665 A. 2016.
  • Joossens J, Augustyns K, Lambeir AM, et al. Novel klk4 inhibitors patent WO 2015144933 A1. 2015.
  • Wagberg F, Leonardsson G. Benzoxazinone derivatives for treatment of skin diseases patent WO 2015112081 A1. 2015.
  • Tan X, Soualmia F, Furio L, et al. Toward the first class of suicide inhibitors of kallikreins involved in skin diseases. J Med Chem. 2015;58(2):598–612.
  • Koistinen H, Wohlfahrt G, Mattsson JM, et al. Novel small molecule inhibitors for prostate-specific antigen. Prostate. 2008;68(11):1143–1151.
  • Chen W, Kinsler VA, Macmillan D, et al. Tissue kallikrein inhibitors based on the sunflower trypsin inhibitor scaffold - a potential therapeutic intervention for skin diseases. PLoS One. 2016;11(11):e0166268.
  • Oost T, Fiegen D, Gnamm C. Substituted 4-pyridones and their use as inhibitors of neutrophil elastase activity patent US9346794 B1. 2016.
  • Von Nussbaum F, Li VM, Allerheiligen S, et al. Freezing the bioactive conformation to boost potency: the identification of BAY 85-8501, a selective and potent inhibitor of human neutrophil elastase for pulmonary diseases. Chem Med Chem. 2015;10(7):1163–1173.
  • Von Nussbaum F, Karthaus D, Anlauf S, et al. 4-(4-cyano-2-thioaryl)dihydropyrimidinones and their use patent US 20140045802 A1. 2014.
  • Von Nussbaum F, Li VM, Meibom D, et al. Potent and selective human neutrophil elastase inhibitors with novel equatorial ring topology: in vivo efficacy of the polar pyrimidopyridazine BAY-8040 in a pulmonary arterial hypertension rat model. ChemMedChem. 2016;11(2):199–206.
  • Blench JT, Edwards C, Heald RA, et al. Tetrahydrotriazolopyrimidine derivatives as human neutrophil elastase inhibitors patent WO 2013037809 A1. 2013.
  • Gnamm C, Oost T, Peters S. Substituted bicyclic dihydropyrimidinones and their use as inhibitors of neutrophil elastase activity patent US 20140221335 A1. 2014.
  • Alcaraz L, Sutton JM, Calpadi C, et al. Tetrahydrotriazolopyrimidine derivatives as human neutrophil elastase inhibitors patent WO2015091281 A1. 2015.
  • Armani E, Capaldi C. Novel tetrahydrotriazolopyrimidine derivatives as nhe inhibitors. WO 2017102674 A1. 2017.
  • Armani E, Capaldi C. Novel compounds patent US 20170166574 A1. 2017.
  • Vicuna L, Simonetti M, Bali KK, et al. Selective inhibitors of neutrophil elastase for treating neuropathic pain and chronic pain states harbouring a neuropathic component patent WO 2016050835 A2. 2016.
  • Wiedow O, Bargmann B, Kahlke B, et al. inventorNovel uses of elafin patent US20140287985 A1. 2014.
  • Nickel NP, Spiekerkoetter E, Gu M, et al. Elafin reverses pulmonary hypertension via caveolin-1-dependent bone morphogenetic protein signaling. Am J Respir Crit Care Med. 2015 Jun 01;191(11):1273–1286.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.