642
Views
13
CrossRef citations to date
0
Altmetric
Review

Benzoxaborole compounds for therapeutic uses: a patent review (2010- 2018)

, &
Pages 493-504 | Received 27 Feb 2018, Accepted 03 May 2018, Published online: 11 May 2018

References

  • Ban HS. Nakamura H Boron-based drug design. Chem Rev. 2015;15:616–635.
  • Das BC, Thapa P, Karki R, et al. Boron chemicals in diagnosis and therapeutics. Future Med Chem. 2013;5:653–676.
  • Ciani L, Ristori S. Boron as a platform for new drug design. Expert Opin Drug Discov. 2012;7:1017–1027.
  • Cid J, Carbó JJ, Fernández E. Disclosing the structure/activity correlation in trivalent boron-containing compounds: a tendency map. Chem Eur J. 2012;18:12794–12802.
  • Yang W, Gao X, Wang B. Boronic acid compounds as potential pharmaceutical agents. Med Res Rev. 2003;23:346–368.
  • Richardson PG, Hideshima T, Anderson KC. Bortezomib (PS-341): a novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control. 2003;10:361–369.
  • Adams J, Behnke M, Chen SW, et al. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett. 1998;8:333–338.
  • Groll M, Berkers CR, Ploegh HL, et al. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure. 2006;14:451–456.
  • Torssell K. Zur kenntnis der arylborsauren 0. 3. Bromierung der tolylborsauren nach wohl-zieglerArk. Kemi. 1957;10:507.
  • Rock FL, Mao W, Yaremchuk A, et al. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science. 2007;316:1759–1761.
  • Liu CT, Tomsho JW, Benkovic SJ. The unique chemistry of benzoxaboroles: current and emerging applications in biotechnology and therapeutic treatments. Bioorg Med Chem. 2014;22:4462–4473.
  • Adamczyk-Woźniak A, Borys KM, Sporzyński A. Recent developments in the chemistry and biological applications of benzoxaboroles. Chem Rev. 2015;115:5224−5247.
  • Zhang J, Zhu M, Lin Y, et al. The synthesis of benzoxaboroles and their applications in medicinal chemistry. Sci China Chem. 2013;56:1372–1381.
  • Informations on kerydin. Available from: https://www.kerydin.com
  • Akama T, Baker SJ, Zhang YK, et al. Discovery and structure-activity study of a novel benzoxaborole anti-inflammatory agent (AN2728) for the potential topical treatment of psoriasis and atopic dermatitis. Bioorg Med Chem Lett. 2009;19:2129–2132.
  • Efficacy and safety of AN2898 and AN2728 topic ointments to treat mild-to-moderate atopic dermatitis. Clinical trials Informations. Available from: https://clinicaltrials.gov/ct2/show/NCT01301508
  • Freund YR, Akama T, Alley MRK, et al. Boron-based phosphodiesterase inhibitors show novel binding of boron to PDE4 bimetal center. FEBS Lett. 2012;586:3410–3414.
  • Jacobs RT, Plattner JJ, Don R. Molecule of the month. Curr Top Med Chem. 2011;11:1301.
  • Li X, Plattner JJ, Hernandez V, et al. Synthesis of novel benzoxaborole-containing phenylalanine analogues. Tetrahedron Lett. 2011;52:4924–4926.
  • Zhdankin VV, Persichini PJ, Zhang L, et al. Synthesis and structure of benzoboroxoles: novel organoboron heterocycles. Tetrahedron Lett. 1999;40:6705–6708.
  • Dowlut M, Hall DG. An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J Am Chem Soc. 2006;128:4226–4227.
  • Berube M, Dowlut M, Hall DG. Benzoboroxoles as efficient glycopyranoside-binding agents in physiological conditions: structure and selectivity of complex formation. J Org Chem. 2008;73:6471–6479.
  • Snyder HR, Reedy AJ, Lennarz WJ. Synthesis of aromatic boronic acids. Aldehydo boronic acids and a boronic acid analog of tyrosine. J Am Chem Soc. 1958;80:835–838.
  • Baker SJ, Tomsho JW, Benkovic SJ. Boron-containing inhibitors of synthetases. Chem Soc Rev. 2011;40:4279–4285.
  • Trippier PC, McGuigan C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications. Med Chem Commun. 2010;1:183–198.
  • Smoum R, Rubinstein A, Dembitsky VM, et al. Boron containing compounds as protease inhibitors. Chem Rev. 2012;112:4156–4220.
  • Hernandez V, Crepin T, Palencia A, et al. Discovery of a novel class of boron-based antibacterials with activity against Gram-negative bacteria. Antimicrob Agents Chemother. 2013;57:1394–1403.
  • Ding D, Meng Q, Gao G, et al. Design, synthesis, and structure−activity relationship of Trypanosoma brucei leucyl-tRNA synthetase inhibitors as antitrypanosomal agents. J Med Chem. 2011;54:1276–1287.
  • Xia Y, Cao K, Zhou Y, et al. Synthesis and SAR of novel benzoxaboroles as a new class of β-lactamase inhibitors. Bioorg Med Chem Lett. 2011;21:2533–2536.
  • Li X, Zhang YK, Liu Y, et al. Synthesis of new acylsulfamoyl benzoxaboroles as potent inhibitors of HCV NS3 protease. Bioorg Med Chem Lett. 2010;20:7493–7497.
  • Inglis SR, Zervosen A, Woon ECY, et al. Synthesis and evaluation of 3-(dihydroxyboryl)benzoic acids as D,D-carboxypeptidase R39 inhibitors. J Med Chem. 2009;52:6097–6106.
  • Alterio V, Cadoni R, Esposito D, et al. Benzoxaborole as a new chemotype for carbonic anhydrase inhibition. Chem Commun. 2016;52:11983−11986.
  • Wieczorek D, Lipok J, Borys KM, et al. Investigation of fungicidal activity of 3-piperazine-bis(benzoxaborole) and its boronic acid analogue. Appl Organometal Chem. 2014;28:347–350.
  • Seebacher C, Brasch J, Abeck D, et al. Onychomycosis. Mycoses. 2007;50:321–327.
  • Thomas J, Jacobson GA, Narkowicz CK, et al. Toenail onychomycosis: an important global disease burden. J Clin Pharm Ther. 2010;35:497–519.
  • Gupta AK, Shear NH. A risk-benefit assessment of the newer oral antifungal agents used to treat onychomycosis. Drug Saf. 2000;22:33–52.
  • Drake LA, Patrick DL, Fleckman P, et al. The impact of onychomycosis on quality of life: development of an international onychomycosis-specific questionnaire to measure patient quality of life. J Am Acad Dermatol. 1999;41:189–196.
  • Baker SJ, Akama T, Hernandez VS, et al. Boron-containing small molecules. US7767657 (B2). 2010.
  • Gupta AK, Simpson FC. New therapeutic options for onychomycosis. Expert Opin Pharmacother. 2012;13:1131–1142.
  • Coronado D, Merchant T. Compounds and nail polish.US2017216327 (A1). 2017.
  • Patel B, Woodward C, Gordon P. Onychomycosis treatment delivery system. US20110082118. 2011.
  • Patel B, Woodward C, Gordon P. Antifungal drug delivery system. US 20110076261 A1. 2011.
  • Benkovic S, Liu C. Synergistic benzoxaborole-containing anti-fungicidal composition. CA2981773 (A1). 2016.
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discovery. 2008;7:168–181.
  • Capasso C, Supuran CT. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin Ther Targets. 2015;19:1689–1704.
  • Schlicker C, Hall RA, Vullo D, et al. Structure and inhibition of the CO2-sensing carbonic anhydrase Can2 from the pathogenic fungus Cryptococcus neoformans. J Mol Biol. 2009;385:1207–1220.
  • Nocentini A, Cadoni R, Del Prete S, et al. Benzoxaboroles as efficient inhibitors of the β-carbonic anhydrases from pathogenic fungi: activity and modeling study. ACS Med Chem Lett. 2017;8:1194−1198.
  • Xia Y, Alley MRK, Zhou Y, et al. Trisubstituted boron-containing molecules. WO2011017125 A1. 2011.
  • Hernandez VS, Li X, Zhang S, et al. Boron-containing small molecules. WO2011060199 A1. 2011.
  • Hernandez VS, Ding C, Plattner JJ, et al. Boron-containing small molecules. WO2012033858 A2. 2012.
  • Hernandez VS, Li X, Zhang S, et al. Boron-containing small molecules. WO2011060196 A1. 2011.
  • Goldstein EJ, Citron DM, Tyrrell KL, et al. Comparative in vitro activities of GSK2251052, a novel boron-containing leucyl-tRNA synthetase inhibitor, against 916 anaerobic organisms. Antimicrob Agents Chemother. 2013;57:2401–2404.
  • Mendes RE, Alley MR, Sader HS, et al. Potency and spectrum of activity of AN3365, a novel boron-containing protein synthesis inhibitor, tested against clinical isolates of Enterobacteriaceae and non-fermentative Gram-negative bacilli. Antimicrob Agents Chemother. 2013;57:2849–2857.
  • Palencia A, Crepin T, Vu MT, et al. Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Nat Struct Mol Biol. 2012;19:677–684.
  • O’Dwyer K, Spivak AT, Ingraham K, et al. Bacterial resistance to leucyl-tRNA synthetase inhibitor GSK2251052 develops during treatment of complicated urinary tract infections. J Antimicrob Agents Chemother. 2015;59:289–298.
  • Alley MRK, Widdowson K. Benzoxaborole compounds and uses thereof. WO2013154759 A1. 2014.
  • Bowers GD, Tenero D, Patel P, et al. Disposition and metabolism of GSK2251052 in humans: a novel boron-containing antibiotic. Drug Metab Dispos. 2013;41:1070–1071.
  • Hu QH, Liu RJ, Fang ZP, et al. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase. Sci Rep. 2013;3:2475.
  • Alley MRK, Barros-Aguirre D, Giordano I, et al. Benzoxaborole compounds and uses thereof. WO 2016128949 (A1). 2016.
  • Alley MRK, Barros-Aguirre D, Giordano I, et al. Benzoxaborole compounds and uses thereof. CA2976308 (A1). 2016.
  • WHO. Global tuberculosis report 2017. Geneva: World Health Organization; 2018 [cited 2018 Feb 25]. Available from: www.who.int/tb/publications/en/
  • Coker RJ. Multidrug-resistant tuberculosis: public health challenges. Trop Med Int Health. 2004;9:25−40.
  • Li X, Hernandez V, Rock FL, et al. Discovery of a potent and specific M. tuberculosis leucyl-tRNA synthetase inhibitor: (S)3-(aminomethyl)-4-chloro-7-(2-hydroxyethoxy)benzo[c][1,2] oxaborol-1(3H)ol (GSK656). J Med Chem. 2017;60:8011−8026.
  • Livermore DM. Beta-lactamase-mediated resistance and opportunities for its control. J Antimicrob Chemother. 1998;41(Suppl D):25–41.
  • Smoum R, Rubinstein A, Dembitsky VM, et al. Boron containing compounds as protease inhibitors. Chem Rev. 2012;112:4156–4220.
  • Printsevskaya SS, Reznikova MI, Korolev AM, et al. Focusing on boron in medicinal chemistry. Future Med Chem. 2013;5:641–652.
  • Jacobs RT, Plattner JJ, Keenan M. Boron-based drugs as antiprotozoals. Curr Opin Infect Dis. 2011;24:586–592.
  • Kappagoda S, Ioannidis JP. Neglected tropical diseases: survey and geometry of randomised evidence. Bmj. 2012;345:e6512.
  • Jacobs RT, Nare B, Phillips MA. State of the art in African trypanosome drug discovery. Curr Top Med Chem. 2011;11:1255–1274.
  • Jacobs RT, Plattner JJ, Nare B, et al. Benzoxaboroles: a new class of potential drugs for human African trypanosomiasis. Future Med Chem. 2011;3:1259–1278.
  • MäSer P, Wittlin S, Rottmann M, et al. Antiparasitic agents: new drugs on the horizon. Curr Opin Pharmacol. 2012;12:562–566.
  • Qiao Z, Wang Q, Zhang F, et al. Chalcone-benzoxaborole hybrid molecules as potent antitrypanosomal agents. J Med Chem. 2012;55:3553–3557.
  • Nocentini A, Cadoni R, Dumy P, et al. Carbonic anhydrases from Trypanosoma cruzi and Leishmania donovani chagasi are inhibited by benzoxaboroles. J Enzyme Inhib Med Chem. 2018;33:286–289.
  • WHO. World malaria report 2017. . Available from: http://www.who.int/malaria/publications/world-malaria-report-2017/report/en/
  • Zhang YK, Ge M, Plattner JJ. Recent progress in the synthesis of antimalarial agents. Org Prep Proc Int. 2012;44:340–374.
  • Zhang YK, Plattner JJ, Freund YR, et al. Synthesis and structure–activity relationships of novel benzoxaboroles as a new class of antimalarial agents. Bioorg Med Chem Lett. 2011;21:644–651.
  • Zhang YK, Plattner JJ, Freund YR, et al. Benzoxaborole antimalarial agents. Part 2: discovery of fluoro-substituted 7-(2-carboxyethyl)-1,3-dihydro-1-hydroxy-2,1-benzoxaboroles. Bioorg Med Chem Lett. 2012;22:1299–1307.
  • Sonoiki E, Ng CL, Lee MCS, et al. A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue. Nat Commun. 2017;8:14574.
  • Orr M, Jenks M. Boron-containing small molecules as antiprotozoal agents. WO 2011019612A1. 2011.
  • Chen D, Orr M, Sligar J, et al. Boron-containing small molecules as antiprotozoal agents. WO 2011019618 A1. 2011.
  • Orr M, Jenks M. Boron-containing small molecules as antiprotozoal agents. WO 2011019616 A1. 2011.
  • Zhou H, Ding D, Zhou Y, et al. Boron-containing small molecules as antiprotozoal agents. WO 2011022337 A1. 2011.
  • WHO. Hepatitis C Fact Sheets. Available from: http://www.who.int/mediacentre/factsheets/fs164/en/
  • Falade-Nwulia O, Suarez-Cuervo C, Nelson DR, et al. Oral direct-acting agent therapy for hepatitis C virus infection: a systematic review. Ann Intern Med. 2017;166:637–648.
  • Ding CZ, Zhang YK, Li X, et al. Synthesis and biological evaluations of P4-benzoxaborole-substituted macrocyclic inhibitors of HCV NS3 protease. Bioorg Med Chem Lett. 2010;20:7317–7322.
  • Li X, Zhang S, Zhang YK, et al. Synthesis and SAR of acyclic HCV NS3 protease inhibitors with novel P4-benzoxaborole moieties. Bioorg Med Chem Lett. 2011;21:2048–2054.
  • Raines RT, Windsor I, Palte M, et al. Boronic acid inhibitor of HIV protease. US20170327517. 2017.
  • Baker SJ, Sanders V, Akama T, et al. Boron-containing small molecules as anti-inflammatory agents. WO2007095638. 2007.
  • Baker SJ, Sanders V, Akama T, et al. Boron-containing small molecules as anti-inflammatory agents. US20170258819. 2017.
  • Hoy SM. Crisaborole ointment 2%: a review in mild to moderate atopic dermatitis. Am J Clin Dermatol. 2017;18:837–843.
  • Zhang YK, Plattner JJ, Akama T, et al. Design and synthesis of boron-containing PDE4 inhibitors using soft-drug strategy for potential dermatologic anti-inflammatory application. Bioorg Med Chem Lett. 2010;20:2270–2274.
  • Akama T, Virtucio C, Dong C, et al. Structure-activity relationships of 6-(aminomethylphenoxy)-benzoxaborole derivatives as anti-inflammatory agent. Bioorg Med Chem Lett. 2013;23:1680–1683.
  • Zhou Y, Zhang YK, Akama T, et al. Boron containing small molecules. WO2010028005A1. 2010.
  • Dong C, Sexton H, Gertrudes A, et al. Inhibition of toll-like receptor-mediated inflammation in vitro and in vivo by a novel benzoxaborole. J Pharmacol Exp Ther. 2013;344:436–446.
  • Akama T, Dong C, Virtucio C, et al. Discovery and structure-activity relationships of 6-(benzoylamino)benzoxaboroles as orally active anti-inflammatory agents. Bioorg Med Chem Lett. 2013;23:5870–5873.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.